

С14-ЕЕ/СНРР/РЕТ-401

4461

BOARD DIPLOMA EXAMINATION, (C-14)

JUNE-2019

DAEEE—FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-III

Time: 3 hours]

[Total Marks : 80

PART-A

 $3 \times 10 = 30$

Instructions : (1) Answer all questions.

(2) Each question carries three marks.

1. Solve
$$(D^2 - 6D + 8)y = 0$$
.

2. Solve
$$(D^4 - 18D^2 + 81)y = 0$$
.

3. Find the particular integral for $(D^2 - 1)y = x^2$.

4. Find
$$L\{3t^2 + 2\cos 2t + e^{-t}\}$$
.

5. Find $L\{t^7e^{15t}\}$.

6. Find
$$L^{-1}\left(\frac{s}{(s+2)(s-1)}\right)$$

7. Find
$$L^{-1}\left(\frac{2s-5}{s^2+4}\right)$$
.

/4461

- 8. Write the formulae for Fourier series of a function f(x) in the interval $[c, c + 2\pi]$.
- 9. Find the constant term in the Fourier series corresponding to $f(x) = x + x^3$ in $(-\pi, \pi)$.
- **10.** Find the probability of getting two heads when three coins are tossed.

PART-B

 $10 \times 5 = 50$

- *Instructions* : (1) Answer *any* **five** questions.
 - (2) Each question carries ten marks.

11. (a) Solve
$$(D^2 - 7D + 10)y = 3e^{5x}$$

- (b) Find the particular integral of $(D^2 + D + 9)y = \sin 3x$.
- **12.** (a) Solve $(D^2 16)y = \cosh x$.
 - (b) Solve $(D^2 + D + 2)y = x^2$.

13. (a) Find
$$L\{e^t(t^2 - 6t + 7)\}$$
.

(b) Find
$$L\left\{\frac{1-\cos t}{t}\right\}$$
.

14. (a) Find
$$L^{-1}\left\{\frac{s}{(s+1)(s+2)}\right\}$$
.

(b) Using convolution theorem find $L^{-1}\left\{\frac{1}{(s^2+9)(s+3)}\right\}$.

15. Express f(x) = x as a Fourier series in $(-\pi, \pi)$.

/4461

[Contd...

- **16.** Obtain the Fourier series to represent $f(x) = \frac{1}{4}(\pi x)^2$ for the interval (0, 2π).
- **17.** (a) A committee of two persons is selected from two men and two women. Find the chance that the committee will have (i) no man, (ii) one man.
 - (b) What is the probability that a leap year, selected at random, will have 53 sundays?
- **18.** (a) Two dice are tossed once. Find the probability of getting an even number on the first die or a total of 8.
 - (b) A problem in statistics is given to three students A, B, C whose chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ respectively. If they try it independently, what is the probability, that the problem will be solved?