# 4245

## **BOARD DIPLOMA EXAMINATION, (C-14)**

## **JUNE-2019**

# **DEEE- THIRD SEMESTER EXAMINATION**

# ELECTRICAL CIRCUITS

Time: 3 Hours ]

[Max.Marks: 80

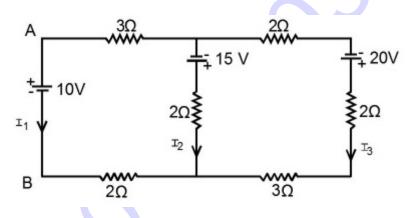
## PART-A

10x3=30M

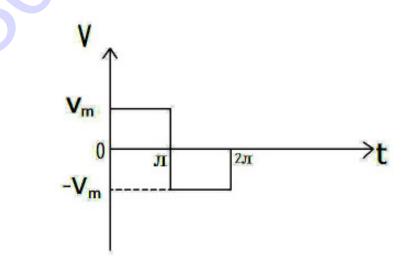
**Instructions:** 1) Answer **all** the questions. Each question carries **three** marks.

- 2) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1) Define (a) Active circuit (b) Passive circuit.
- 2) Three resistances  $10\Omega$ ,  $20\Omega$  and  $30\Omega$  are connected in delta. Find their equivalent values in star.
- 3) State the relation between poles, speed and frequency.
- 4) Define the terms (a) Phase (b) Phase difference.
- 5) Convert the following vector quantities into its equivaulent rectangular from

(i) 25 ∠ 30° (ii) 15 -45°


- 6) Define (a) Inductance (b) Capacitance.
- 7) Derive the relation between voltage and current in pure resistive circuit when a.c. supply is applied across it.
- 8) State the condition for resonance in parallel a.c circuits.
- 9) List any three advantages of 3phase system over single phase system.
- 10) Give the expressions for line and phase values of current and voltage in 3 phase Delta connection.

1


#### PART-B

## 5x10=50M

- *Instructions:* 1) Answer any **five** questions. Each question carries **ten** marks.
  - 2) Answers should be comprehensive and the critertion for valuation is the content but not the length of answer.
- 11) Develop the transformation formula for Star to Delta transformation.
- 12) Find the branch currents I<sub>1</sub>, I<sub>2</sub> and I<sub>3</sub> in the following network by using Kirchoff's Laws.



- 13) (a) State Thevenin's Theorem.
  - (b) Explain Ideal voltage source and Ideal current source. 6M
- 14) Calculate the RMS value, average value and form factor for the following square wave form.



2

[ Contd....

4M

- 15) A series R-C circuit, whose resistance is  $50\Omega$  and capacitance of  $30 \mu$ F, is connected across a 230V , 50Hz supply. Find the (a) Capacitive reactance (b) Impedance (c) Current (d) Power Factor (e) Active power of the circuit.
- Calculate the impedance, current, phase angle, power and power factor in R-L Series circuit.
- 17) Two impedances  $Z_1 = (10+j15)$  and  $Z_2 = (5-j10)$  are connected in parallel across the 230V, 50Hz a.c supply. Find the current passing through each branch, power factor of the whole network and power dissipated in each branch.
- 18) A balanced Star connected load of (15+j25) Ω per phase is connected to a 3-phase,230V,50Hz a.c. supply. Find
  (a) Line current (b) Power factor (c) Active power (d) Reactive power
  - (e) Apparent power.