C14-EE-303

4245

BOARD DIPLOMA EXAMINATION, (C-14) SEPTEMBER/OCTOBER-2020 DEEE-THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

Time : 3 hours]
Total Marks : 80

> PART-A

Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Distinguish between active and passive circuits.
2. State the limitations of Ohm's law.
3. Define the terms (a) time period and (b) frequency.
4. Define the terms (a) RMS value and (b) form factor.
5. Write down the formulas of form factor and peak factor of half-wave rectified sine-wave.
6. Derive the relationship between voltage and current in a pure resistive circuit.
7. Define the terms (a) inductance and (b) capacitance.
8. State the condition for resonance in a parallel circuit.
9. Draw the circuit diagram for measurement of 3 -phase power in star by two-wattmeter method.
10. Write down the relation between phase and line parameters (voltage and current) in delta connected 3-phase system.

PART-B

$$
10 \times 5=50
$$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Develop transformation formula from star to delta.
(b) Three resistances of 20Ω each connected in star. Find the equivalent in delta. If a source of e.m.f. of 120 V is connected across any two terminals of the equivalent delta connected resistances, find the current supplied by the source.
12. (a) State Kirchhoff's current law and Kirchhoff's voltage law.
(b) Find the values of I_{1} and I_{2} of the following circuit by using KVL :

13. (a) State the maximum power transfer theorem and derive the condition for maximum power transfer.
(b) State Thevenin's theorem.
14. (a) An alternating current is represented by the following equation :

$$
i=100 \sin (100 \omega t)
$$

How long will it take for the current to attain values of 20, 50 and 100 A ?
(b) A 50 Hz current has a peak amplitude of 100 A . Find the rate of change of current in ampere per second at time (t) where (i) $t=0.0025 \mathrm{sec}$, (ii) $t=0.005 \mathrm{sec}$ and (iii) $t=0.01 \mathrm{sec}$ after $i=0$ and is increasing.
15. A series circuit consisting of 0.25 H inductance and a capacitance of $10 \mu \mathrm{~F}$. Find (a) impedance, (b) current and (c) power factor of the circuit, when connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply.
16. (a) Derive the expression for resonant frequency in $R-L-C$ series AC circuit.
(b) A resistance of 120Ω, an inductance of $0 \cdot 15 \mathrm{H}$ and a capacitance of $100 \mu \mathrm{~F}$ are connected in series across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) current and (ii) impedance.
17. A series circuit consisting of coil having a resistance of 30 ohms and inductance of 0.5 H and a capacitor, is resonate at a frequency of 48 Hz . Calculate the capacitance of capacitor which when connected in parallel with this circuit will increase the resonant frequency to 60 Hz .
18. (a) Three coils each of resistance of 10Ω and inductance of 30 mH are connected in star across $400 \mathrm{~V}, 3 \mathrm{Ph}, 50 \mathrm{~Hz}$, a.c. supply mains. Calculate the current drawn in each line, power factor of the circuit.
(b) A balanced 3-phase, delta-connected load had per phase impedence of $(25+j 40) \Omega$. If $400 \mathrm{~V}, 3 \mathrm{Ph}, 50 \mathrm{~Hz}, \mathrm{AC}$ supply is connected to this load, find (i) phase current and (ii) line current.

