

C14-EE-106

4046

BOARD DIPLOMA EXAMINATION, (C-14)

OCT/NOV-2016

DEEE—FIRST YEAR EXAMINATION

BASIC ELECTRICAL ENGINEERING

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Explain laws of resistance.
- **2.** The resistance of the field winding of a d.c. machine at 0 °C is 120 . What will be its resistance at a working temperature of 55 °C? Temperature coefficient of resistance of copper is 0.0043/ °C at 0 °C.
- 3. Define electrical power and energy and mention their units.
- **4.** State Joule's law of electric heating.
- **5.** Define (*a*) magnetomotive force, (*b*) reluctance and (*c*) magnetizing force.
- **6.** Compare magnetic circuit with electric circuit in any three aspects.
- 7. State Faraday's law of electromagnetic induction.
- **8.** Define self-inductance and mutual inductance.
- * /4046

[Contd...

- 9. State Coulomb's laws of electrostatics.
- **10.** Define (*a*) electric flux, (*b*) electric flux density and (*c*) electric field intensity.

Instructions : (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (*a*) A silver wire has resistance of 5 , what will be the resistance of manganin wire having a diameter half of the silver and its length being one-fourth of silver. The specific resistance of manganin is 30 times that of silver.
 - (b) Develop the formula for resistance at any temperature

$$R_t \quad R_0 (1 \quad 0 t)$$

12. (a) Find the equivalent resistance for the circuit shown below : 6

(b) Derive an expression for total resistance when three resistances R_1 , R_2 and R_3 are connected in series.

- **13.** A workshop is connected with—
 - (a) 10 fans of 60 W, working for 10 hours a day;
 - (b) two 1 kW heater working for 6 hours a day;

(c) one oven of 1.5 kW working for $\frac{1}{2}$ hour a day;

(d) 15 electric bulbs of 60 W working for 4 hours a day.

Calculate the bill for the month of 30 days at the rate of 55 paise per unit. 10

/4046

[Contd...

6

4

4

		electric current :	6
		(i) Metal filament lamp	
		(ii) Electric kettle	
		(iii) Space heater	
	(b)	An immersion heater takes 1 hour to heat 50 kg of water from 20 °C to boiling point. Calculate the power rating of the heater. Assuming the heating equipment to have an efficiency of 90%.	4
15.	An aw ac	iron ring of mean length 50 cm has an air gap of 1 mm and vinding of 200 turns. If the permeability of iron is 300, when current of 1 ampere flows through the coil, find the flux	
	der	nsity.	10
16 .	(a)	Explain statistically and dynamically induced e.m.f.	6
	(b)	A conductor of length 2 m moves at an angle of 30° to the direction of uniform magnetic field of strength 0.75 Wb/m^2 with a velocity of 50 m/sec. Calculate the e.m.f. induced.	4
17.	(a)	Derive an expression for self-inductance.	4
	(b)	If a coil of 800 H is magnetically coupled to another coil of 200 H, the coefficient of coupling between the coils is 0.05. Calculate the inductance if two coils are connected in <i>(i)</i> series aiding and <i>(ii)</i> series opposing. 3	+3
18.	(a)	Mention the properties of electrostatic lines of force.	6
	(b)	Three capacitors having capacitances of 10 F, 30 F and 90 F are connected in series across 220-V d.c. supply. Find the equivalent capacitance and the charge on each	
		capacitor.	4

* /4046

*

*

 $\star \star \star$