

4046

BOARD DIPLOMA EXAMINATION, (C-14) SEPTEMBER/OCTOBER - 2020 DEEE—FIRST YEAR EXAMINATION

BASIC ELECTRICAL ENGINEERING

Time : 3 hours]

Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Define the following terms :
 - (a) Potential difference
 - *(b)* EMF
- 2. State Ohm's law and give the equation with units.
- **3**. Define thermal efficiency.
- **4**. State Joule's law of electric heating.
- 5. Define the following terms :
 - (a) Magnetic flux
 - (b) Magnetic flux density
- 6. State Biot-Savart law.

/4046

- 7. State Fleming's right-hand rule.
- **8**. Find the area required for such an electromagnet to have a lifting power of 400 kg with a flux density of 0.1 weber/sq. meter.
- **9**. Define the following :
 - (a) Electric flux
 - (b) Electric flux density
 - (c) Electric field intensity
- **10**. Define capacitance and state its units.

PART-B

10×5=50

5

5

10

Instructions : (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11**. (a) Derive the formula for equivalent resistance of three resistances in parallel.
 - (b) The resistance of a conductor at 10 °C is 5 ohm and at 100 °C is 12 ohm. Find the resistance at 0 °C and also find temperature coefficient at 40 °C.
- **12**. Find the total current *I* in the given circuit :

* /4046

[Contd....

* 13	. A household has the following load :	
10	(a) 10 lamps of 60 W each, working for 10 hours a day	
	(b) 1 electric iron of 450 W, working for 1 hour a day	
	(c) 8 fans of 80 W each, working for 12 hours a day	
	(d) 1 heater of 1000 W , working for 1 hour a day	
	(e) 1 refrigerator 250 W, working for 12 hours a day	
	Calculate the monthly bill, if the rate of charge per unit is ₹ 1.20 plus ₹ 20 as meter rent.	10
14	. An electric kettle is rated 1.5 kW , 230 V takes 5 minutes to bring 1 kg of water to boiling point from 150 °C. Find the efficiency of the kettle.	10
15	. (a) Explain work law and its applications.	5
	(b) Derive an expression for force between two parallel current-carrying conductors.	5
16	. (a) State Faraday's laws of electromagnetic induction.	5
	(b) Compare an electric circuit with a magnetic circuit in any five aspects.	5
17	. (a) Derive an expression for lifting power of a magnet.	5
	(b) An inductor with 10Ω resistance and 200 mH inductance	
	is connected to 24 V d.c. supply. Calculate the energy stored in the inductance and power absorbed.	5
18	. (a) Derive an expression for energy stored in a capacitor.	5
	(b) Three capacitors 20 mF; 40 mF and 100 mF are connected	
	in (i) series, (ii) parallel across a 400 V supply. Find the energy stored in each case.	5

* * *

*