

C-14-EE-106

4046

BOARD DIPLOMA EXAMINATION, (C-14)

APRIL/MAY-2015

DEEE—FIRST YEAR EXAMINATION

BASIC ELECTRICAL ENGINEERING

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answer should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. State Ohm's law.
- 2. Define the terms (a) resistance and (b) resistivity.
- 3. Define work, power and energy, and give their SI units.
- **4.** Define thermal efficiency.
- **5.** Give expressions for field strength (*a*) at centre of circular conductor, (*b*) at any point on the axis of a circular conductor and (*c*) around a straight conductor.
- 6. State Fleming's left-hand rule and its application.
- 7. State and explain Lenz's law.
- **8.** Define coefficient of coupling and calculate the coefficient of coupling for two coils having self-inductances of 60 mH and 80 mH. The mutual inductance between them is 40 mH.

* /4046

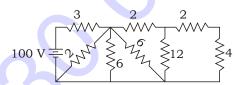
[Contd...

- 9. Define absolute and relative permittivity.
- 10. The capacitance of a capacitor formed by two parallel metal sheets, each 100 cm² in area, separated by a dielectric 2 mm thick is 2 10 ¹⁰ F. Determine the relative permittivity of the dielectric.

10×5=50

Instructions : (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Derive the expression for equivalent resistance when three resistances are connected in parallel.
 - (b) The resistance of 360 m of a wire is 90 . How much length of the same volume of wire will have a resistance of 125 ? 5
- **12.** Find the total current *I* in the given circuit :


10

10

4

6

5

- 13. A house has the following loads :
 - (a) 8 lamps 60 W each working for 6 hr/day
 - (b) 5 fans 80 W each working for 8 hr/day
 - (c) 3 electric heaters 1000 W each working for 2 hr/day
 - (d) 1 electric motor 1.5 HP working for 4 hr/day at an efficiency of 80%

Calculate the electricity bill if rate per unit is ₹ 1.5 plus ₹ 15 as meter rent for the month of September.

- **14.** (a) List the application of (a) space heater and (b) infrared lamp.
 - (b) An electric heater contains 4 liters of water initially at a mean temperature of 15 °C. 0.25 kWh is supplied to the water by the heater. Assuming no heat losses, what is the final temperature of the water?

/4046

[Contd...

^	15.	(a)	Derive an expression for magnitude of the force on a conductor in a magnetic field.	4	
		(b)	A straight conductor of length 0.5 m and carries a current of 100 A is placed in a uniform magnetic field of flux density 1.5 tesla. Calculate the force developed on a conductor, when it is placed (<i>i</i>) at right angle, (<i>ii</i>) in parallel and (<i>iii</i>) at an angle of 30° to the magnetic field.	6	
	16	()	Device on environment for lifeting a second of a manual	1	
	10.	. ,	Derive an expression for lifting power of a magnet.	4	
		(b)	An inductor with 10 resistance and 200 mH inductance is		
			connected to 24 V d.c. supply. Calculate the energy stored	c	
			in the inductance and power absorbed.	6	
	17.	(a)	Explain the self-inductance and derive an expression for it.	6	
		(b)	A coil has 400 turns. Find the induced e.m.f. in it, if the		
			flux changes from 0.2 mWb to 1 m Wb in 0.2 second.	4	
	18.	(a)	State and explain Columb's law of electrostatics.	4	
		. ,	Derive an expression for the capacitance of a parallel-plate	-	
		(0)	capacitor.	6	

\sim \sim					

* /4046

*