

Time: 3 hours]

C09-EE-303

Total Marks: 80

3241

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV-2017

DEEE—THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

PART—A $3 \times 10 = 30$ Instructions: (1) Answer all questions. (2) Each question carries **three** marks. (3) Answer should be brief and straight to the point and shall not exceed five simple sentences. **1.** State Thevenin's theorem. 3 **2.** Define the following terms : 1+1+1=3(a) Lumped parameters (b) Distributed parameters (c) Mesh of an electric network **3.** Derive the RMS value of a full wave rectified alternating quality. 3 **4.** Perform the following operations and express then in rectangular form: 3 (a) (A B)(b) (A B) when A (10 30), B (5 60). **5.** Two currents given by the expression i_1 15 sin (314t 60) amp, i_2 10 sin (314t 45) amp. i_1 i_2 and represent in the similar form. 3 **6.** Draw a vector diagram of an R-L-C series circuit if X_L /3241 1 [Contd...

7. Define *Q*-factor for a parallel resonant circuit.

3

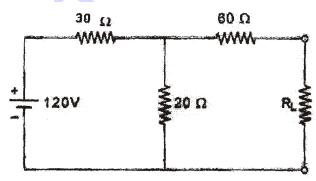
8. What are the different methods by which a parallel a.c. circuit can be solved?

3

- **9.** A 3-phase, 415 V, 50 Hz supply is given to a balanced delta connected load. The current in each branch circuit is 30 A and phase angle is 30° lag, find—
 - (a) the line current;
 - (b) total power.

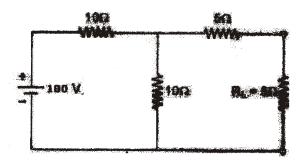
1+2

10. Compare between star- and delta-connection of 3- system.


PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

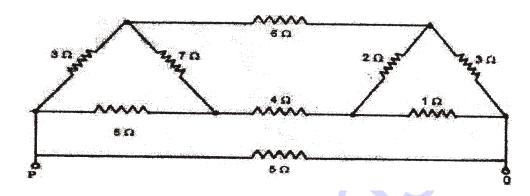

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Determine the value of *R* for maximum power in the resistance as shown in the figure and also calculate the power delivered under these conditions.

5

(b) Using Norton's theorem, find the current in the load resistance R_L of the circuit shown below.

5

12.	(a)	Explain superposition theorem.	3
	(b)	Find the current in the 4 $$ resister of branch AB of the network shown in the figure by using superposition theorem.	7
13.		alternating current of frequency 60 Hz has a maximum ue of 120 A.	
	(a)	Write the equation for instantaneous value.	
	(b)	Reckoning time from the instant the current is zero and becoming positive, find the instantaneous value after 1/360 sec.	
	(c)	Find the time taken to reach 96 A for the first time.	10
14.	(a)	The current flowing through a pure inductor is 20 A. Find the inductance and power consumption when the voltage applied the inductor is $V=200\sin 314t$.	5
	(b)	Show that the power consumed by a pure inductor is zero when AC supply is applied to it.	5
15.	(a)	Derive an expression for impedance of an AC circuit consisting of resistance and a pure capacitor in series. Draw also the vector diagram.	5
	(b)	A capacitor of 50 F is connected in series with a resistor of 100 . The combination is connected across a 230 V, 50 Hz AC supply. Calculate (i) impedance (ii) current (iii) power factor (iv) active power (v) reactive power. 1+1+1+1	L+1
16.	rea	coil having a fixed resistance of 5 and an inductive ctance of 20 are connected in series. The whole circuit is nected across 230 V 50 Hz AC supply. Calculate (a) current wn (b) power factor (c) active power (d) reactive power.	10
17.	(a)	Three similar coils, each having a resistance of 20 and inductance of 0.05 H are connected in star to a 3-phase 50 Hz supply with 400 V between lines. Calculate the total power absorbed and the line current.	5
	(b)	A balanced 3-phase star-connected load of 100 kW takes a leading current of 80 A. When connected across 3-phase 1100 V, 50 Hz supply, find the circuit constants of the load per phase.	5


3

* /3241

[Contd...

18. (a) Determine the resistance of the circuit between points P and Q as shown in figure.

7

(b) How will the parameters resistance, inductive reactance, capacitive reactance vary with the frequency?

3