

C09-CHPP-302/C09-EE-302

3240

BOARD DIPLOMA EXAMINATION, (C-09)

MARCH/APRIL—2014

DEEE—THIRD SEMESTER EXAMINATION

ENGINEERING MATHEMATICS—II

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answer should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Evaluate $\frac{1}{x(\log x)^2} dx$.
- **2.** Evaluate $2xe^{x^2}dx$.
- **3.** Evaluate $(x \ 2)(x \ 3) dx$.
- **4.** Evaluate $xe^x dx$.
- **5.** Evaluate $\frac{dx}{\sqrt{9} + x^2}$.
- **6.** Find the area bounded by the parabola $y = x^2$, x-axis and the lines x = 2, x = 3.
- 7. Evaluate $\int_{4}^{5} x^2 dx$.
- **8.** Form the differential equation of family of curves $y + A\cos 2x + B\sin 2x$. Where A, B are arbitrary constants.
- **9.** Find the particular integral of $(D^2 ext{ } 5D ext{ } 6)y ext{ } e^{4x}$.
- **10.** Solve $\sqrt{(1 \ y^2)} dx \ \sqrt{(1 \ x^2)} dy$ 0.

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Evaluate $\frac{2x-3}{(x-1)(2x-3)}dx$.
 - (b) Evaluate $x^2e^{5x} dx$.
- **12.** (a) Evaluate $\cos 3x \cos 2x \, dx$.
 - (b) Evaluate $\cos^3 \sin^6 d$.
- **13.** Find the area enclosed by the circle x^2 y^2 16 using the method of integration.
- **14.** (a) Find the volume of the solid obtained by revolving the ellipse $25x^2$ $16y^2$ 400 about its major axis.
 - (b) Find the RMS value of $\sqrt{\log x}$ between the limits x = 1 and x = e.
- **15.** Solve $(x^2 y^2) \frac{dy}{dx} xy$.
- **16.** (a) Solve $(D^2 \ D \ 1)y \ 2\sin 3x$.
 - (b) Solve $(D^2 2D)y x^2$.
- **17.** (a) Solve $\frac{dy}{dx}$ $y \cot x$ $\csc x$.
 - (b) Solve $(D^2 \ 5D \ 6)y \ 3e^{5x}$.
- **18.** (a) Evaluate $\int_0^1 x^2 dx$ approximately by dividing the interval [0, 1] into 10 sub-intervals using trapezoidal rule.
 - (b) Solve $\frac{dy}{dx}$ $(x \ y)^2$.

* * *