

C09-CHPP-302/C09-EE-302

3240

BOARD DIPLOMA EXAMINATION, (C-09)

OCT/NOV-2013

DEEE—THIRD SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-II

Time : 3 hours]

[Total Marks : 80

PART—A

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answer should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Evaluate :

 $(\cos x \quad \sin x) dx$

2. Evaluate :

$$\frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}\,dx$$

3. Evaluate :

 $\sqrt{1 \cos 2x} \, dx$

4. Evaluate :

 $\sqrt{9 \quad x^2} \, dx$

* /3240

[Contd...

5. Evaluate :

 $\frac{1}{5x \quad 7} dx$

6. Evaluate :

$$\int_{1}^{\sqrt{3}} \frac{1}{1-x^2} dx$$

- 7. Find the area enclosed by the parabola $y = x^2$, the x-axis and the lines x = 3 and x = 5.
- **8.** Form the differential equation of the family of curves, $y Ae^x Be^x$, where A, B are arbitrary constants.
- **9.** Solve :

$$\frac{d^2y}{dx^2} \quad 16\frac{dy}{dx} \quad 64y \quad 0$$

10. Solve :

x dy y dx 0

Instructions : (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (*a*) Evaluate :

 $\cos 3x \cos 2x \, dx$

(b) Evaluate :

 $\cos^3 \sin^6 d$

* /3240

[Contd...

12. (a) Evaluate :

*

$$\frac{x \quad 2}{(x \quad 1)(x \quad 3)} \, dx$$

(b) Evaluate :

$$x^2 e^{3x} dx$$

- **13.** Find the area bounded by the curve $16x^2$ $25y^2$ 400, using the method of integration.
- **14.** (a) Find the RMS value of $\sqrt{\log x}$ over the range x 1 to x e.

 $\sin 2x$

 x^2

- (b) Find the volume of the sphere with radius *r* using the method of integration.
- 15. Solve :

$$\frac{dy}{dx} = \frac{2x}{x} \frac{y}{y}$$

- **16.** (*a*) Solve :
 - $(D^2 4)y$

 $(D^2$

dy

dx

<u>y</u>

х

- (b) Solve :
- 17. (a) Solve :

(b) Solve :

$$(D^2 \ 2D \ 1)y \ 4e^{3x}$$

5

18. Use Simpson's rule to evaluate $\int_{5}^{5} x^{4} dx$

by taking eleven equidistant ordinates.

* /3240