
co9-EE-105

3037

BOARD DIPLOMA EXAMINATION, (C-09)
 MARCH / APRIL-2014 DEEE-FIRST YEAR EXAMINATION

BASIC ELECTRICAL ENGINEERING
Time : 3 hours] [Total Marks : 80

PART-A

$3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State the laws of resistance.
2. Define work, power and energy.
3. Define annealing and hardening.
4. Define (a) flux density, (b) reluctance.
5. State the Faraday's laws of electromagnetic induction.
6. Derive the relation between L1, L2, M and K.
7. State the Coulomb's law of electrostatics.
8. List the various factors affecting the insulation resistance.
9. Classify special purpose materials.
10. Write any three differences between p-type and n-type semiconductors.

PART—B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. Find the current and power consumed by the 2Ω resistor: 10

12. (a) List the properties of (i) manganin, (ii) nicrome.
(b) Explain the common methods of impregnation.
13. (a) Explain the Joule's law of electric heating.
(b) An electric kettle is marked $500 \mathrm{~W}, 230 \mathrm{~V}$ and is found to take 15 minutes to raise 1 kg of water from $15^{\circ} \mathrm{C}$ to boiling point. Calculate the efficiency of kettle.
14. A circular iron ring 20 cm in diameter has an air-gap of 1 mm wide cut in it. The area of cross-section of the ring is $3.6 \mathrm{~cm}^{2}$. Calculate the number if amp-turns needed to set up a flux of 0.5 milli weber in the air-gap. Neglect leakage and fringing.
15. (a) Two inductances of 40 mH and 80 mH are connected in series such that their fluxes are in the same direction. The coefficient of coupling is 0.8 . Calculate (i) the total inductance of the combination, (ii) mutual inductance.
(b) Obtain the expression for lifting power of a magnet.
16. (a) Derive the expression for energy stored in a capacitor.
(b) Three capacitors $10 \mu \mathrm{~F}, 25 \mu \mathrm{~F}$ and $50 \mu \mathrm{~F}$ connected in (i) series, (ii) parallel across a 400 V supply. Find the total energy stored in each case.
17. (a) Write the properties and applications of PVC. 6
(b) Explain two types of mica. 4
18. Explain $V-I$ characteristics of $p-n$ junction diode with neat sketch.

