

со9-снрр-103/со9-ее-103

3035

BOARD DIPLOMA EXAMINATION, (C-09)

MARCH/APRIL-2014

DEEE—FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART-A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Check correctness of equation v^2 u^2 2*as.*
- 2. State and explain polygon law of vectors.
- **3.** Derive formula for maximum range in case of oblique projection.
- 4. State laws of static friction.
- **5.** Define SHM and give two examples.
- 6. State gas laws.
- 7. Distinguish between music and noise.
- 8. Define surface tension and give two examples.
- 9. State Kirchhoff 1st law and 2nd law.
- 10. State three laws of photo electric effect.

* /3035

[Contd...

PART-B

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (*a*) State parallelogram law of vector addition and find expression for resultant vector.
 - (b) Find the area of parallelogram formed by two vectors

A 2i 3j k and B i 2j 2k as two adjacent sides.

- **12.** (a) Show that oblique projection is parabola.
 - (b) Derive formulas for maximum height and time of ascent in case of vertical projection.
- **13.** (a) Define the terms work, power and energy.
 - (b) Define PE and KE and give two examples. (one for each).
 - (c) Show that KE $\frac{1}{2}$ mv².
- **14.** (a) Explain experimental method of determination of acceleration due to gravity g using simple pendulum.
 - (b) Define seconds pendulum.
- **15.** (a) State first and second law of thermodynamics.
 - (b) Show that $C_P \quad C_V \quad R$.
- **16.** Define noise pollution. Explain four effects of noise pollution. Write four methods to minimize noise pollution.
- **17.** (a) Define three types of modulus of elasticity.
 - (b) Define angle of contact and capillarity.
- **18.** (a) Derive formula for couple acting on bar magnet placed inside uniform magnetic field.
 - *(b)* Derive magnetic induction field strength at a point on axial line.

* * *

* /3035

*

AA46—PDF