

C09-CHPP-102/C09-EE-102

3034

BOARD DIPLOMA EXAMINATION, (C-09)
 MARCH/APRIL-2014
 DEEE—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

PART-A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. If $x+\frac{1}{x}=5$, find $x^{2}+\frac{1}{x^{2}}$.
2. Find the value of ${ }^{10} P_{5}$.
3. Show that $\frac{1}{x+7}+\frac{1}{x-7}=\frac{2 x}{x^{2}-49}$.
4. Show that $\frac{1+\cos 2 A}{\sin 2 A}=\cot A$.
5. Show that $\frac{\cos 11^{\circ}+\sin 11^{\circ}}{\cos 11^{\circ}-\sin 11^{\circ}}=\cot 34^{\circ}$.
6. Find the multiplicative inverse of $4+5 i$.
7. Find the equation of a straight line passing through $(2,-5)$ and perpendicular to $7 x+2 y-1=0$.
8. Find the centre and radius of the circle $x^{2}+y^{2}+3 x-4 y=0$
9. Find $\underset{\theta \rightarrow 0}{\operatorname{Lt}} \frac{\tan a \theta}{\sin b \theta}$.
10. Find the derivative of $x^{3} \log x$ w.r.t.x.

PART—B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. Solve the equations

$$
\begin{array}{r}
3 x+2 y+2 z=5 \\
2 x+y-z=1 \\
x+y-z=0
\end{array}
$$

using matrix inverse method.
12. (a) Show that

$$
\frac{\cos 3 A+\cos A}{\sin 3 A+\sin A}=\cot 2 A
$$

(b) Show that

$$
\tan ^{-1} \frac{2}{13}+\tan ^{-1} \frac{5}{7}=\tan ^{-1} \frac{79}{81}
$$

13. (a) Solve $(2 \cos \theta-1)(\cos \theta-1)=0$.
(b) In any $\triangle A B C$, show that

$$
\sum \frac{\cos A}{a}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}
$$

14. (a) Find the equation of parabola with focus $(1,-1)$ and directrix $x-y+2=0$.
(b) Find the centre, vertices, eccentricity, foci, equations of directrices and lengths of latus rectum of the ellipses represented by the equation $9 x^{2}+4 y^{2}=36$.
15. (a) Find the equation of hyperbola whose centre is $(-3,4)$ and a focus is $(5,4)$ with eccentricity $e=2$.
(b) Find the centroid of the triangle whose vertices are (2, 2, -1), $(3,4,2)$ and $(7,0,6)$.
16. (a) Differentiate $\tan ^{-1}(\log x)$ with respect to $\log \left(\tan ^{-1} x\right)$.
(b) If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.
17. (a) Find the lengths of tangent, normal, sub-tangent and sub-normal to the curve $x y=9$ at the point $(3,3)$.
(b) Volume of a spherical balloon is increasing at a rate of $400 \mathrm{cubic} \mathrm{cm} / \mathrm{sec}$. Find the rate of increase of its radius and surface area when its radius is 40 cm .
18. (a) The sum of two numbers is 36 . Find them if their product is maximum.
(b) If an error of 0.02 cm is made in measuring the radius 20 cm of a sphere, find the \% error in its volume.
