7243

BOARD DIPLOMA EXAMINATION, (C-20)

JUNE/JULY-2022

DECE – THIRD SEMESTER EXAMINATION

NETWORK ANALYSIS

Time: 3 hours]

PART-A

[Total Marks : 80

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. Define the terms branch, junction and loop in circuits.
- 2. Determine the number of mesh equations required to solve the given network.

3. Three resistances of 20Ω , 40Ω and 60Ω are connected in delta. Find the equivalent star-connected resistances.

1

/7243

[Contd...

- **4.** Mention the concept of duality.
- 5. State any three conditions for series resonance.
- 6. Compare any three parameters for series and parallel resonance.
- 7. Define Laplace transform.
- **8.** Define the terms (a) initial condition, (b) steady state and (c) transient state.
- **9.** Compute the Laplace transform of the function f(t) = 2u(t-3).
- **10.** Define the terms (a) characteristic impedance and (b) propagation constant.

8×5=40

Instructions : (1) Answer **all** questions.

/7243

- (2) Each question carries **eight** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- **11.** (a) Solve for mesh currents using Cramer's rule for the given network below :

2

[Contd...

(OR)

*

/7243

(b) Find $V_{\rm A}$ and $V_{\rm B}$ for the circuit shown below using Node Voltage Analysis :

12. (a) Find the current through 10Ω resistor using Thevenin's theorem :

(b) Find the current through 23Ω resistor by using superposition theorem :

[Contd...

3

13. (a) A circuit having a resistance of 4.0Ω with an inductance of 0.5 H and a variable capacitance in series, is connected across a 100 V, 50 Hz supply. Calculate (i) the capacitance required to attain resonance; (ii) voltages across the inductance and the capacitance at resonance; (iii) the Q factor of the circuit.

(**OR**)

(b) A coil of 1 k Ω resistance and 0.15 H inductance is connected in parallel with a variable capacitor across a 2.0 V, 10 kHz a.c. supply as shown. Calculate (*i*) the capacitance of the capacitor when the supply current is a minimum; (*ii*) the effective impedance Z_r of the network at resonance; (*iii*) the supply current at resonance.

14. (a) Explain the d.c. response of an RLC circuit.

(**OR**)

(b) Explain Heaviside's expansion theorem with one example.

15. (a) Explain T type attenuators with circuit diagram.

(OR)

(b) Design a high pass filter having a cut-off frequency of 1 kHz with load resistance of 600Ω .

/7243

[Contd...

- (2) The question carries **ten** marks.
- (3) Answer should be comprehensive and criterion for valuation is the content but not the length of the answer.

16. In the circuit of Fig. when $R = 0 \Omega$, the current i_R equals 10 A :

- (a) Find the value of R for which it absorbs maximum power.
- (b) Find the value of E.
- (c) Find V2 when $R = \infty$ (open circuit)

*

 $10 \times 1 = 10$