C20-COMMON-301

7239

BOARD DIPLOMA EXAMINATION, (C-20)

FEBRUARY/MARCH – 2022

THIRD SEMESTER (COMMON) EXAMINATION

ENGINEERING MATHEMATICS - II

Time: 3 hours]

PART—A

[Total Marks : 80

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. Evaluate $\int (cosec^2 x + e^x \cos x) dx$
- **2.** Evaluate $\int \cos^2 x \, dx$
- **3.** Evaluate $\int \frac{\cos(\tan^{-1})}{1+x^2}$
- **4.** Evaluate $\int x \sin x \, dx$
- **5.** Evaluate $\int_{1}^{2} \frac{x}{1-x^2}$
- **6.** Find the mean value of $x + x^2$ in the interval [2,6].
- 7. Find the volume of the solid formed by the curve $y = x^2 + 3$, the x-axis and the lines x = 1 and x = 2.

/7239

[Contd...

- 8. Find the differential equation of the family of curves $y = A\cos^3 x B\sin^3 x$ where A and B are arbitrary constants.
- **9.** Solve $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$
- **10.** Find the integrating factor of the differential equation $\frac{dy}{dx} + 2y \tan x = \sin x$.

PART-B

8×5=40

Instructions : (1) Answer **all** questions.

- (2) Each question carries **eight** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.

11. Evaluate
$$\int \frac{x+7}{x^2+5x+6} dx$$

(OR)

Evaluate $\int \sin 5 \sin 3x \, dx$

12. Evaluate $\int x^3 \cos 3x \, dx$

(OR)

Evaluate $\int x \cot^{-1} x \, dx$

13. Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx$$

(**OR**)

Evaluate
$$\int_0^{\frac{\pi}{4}} \tan^4 x \sec^2 x \, dx$$

/7239

14. Find the mean value of value of xe^x over the range x = 1 to x = 5.

(OR)

Find the area enclosed by the curve $y = x^2$ and the line 2x - y + 3 = 0.

15. Find the approximate value of $\int_{4}^{8} \frac{1}{x} dx$ using Simpson rule by dividing the interval [4,8] into four equal parts.

(OR)

Find the volume of a right circular cone of height '*h*' and base radius '*r*' using integration.

 $10 \times 1 = 10$

Instructions : (1) Answer the following question.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- **16.** Solve $(x^3 + 3xy^2)dx + (3x^2y + y^3)dy = 0$

* * *