7028

BOARD DIPLOMA EXAMINATION, (C-20)

SEPTEMBER/OCTOBER—2021

DECE - FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS - I

Time: 3 hours]

[Total Marks : 80

PART—A

 $3 \times 10 = 30$

(1) Answer **all** questions. **Instructions:**

- (2) Each question carries **three** marks.
- If the function f is defined by $f(x) = \frac{2x+3}{5}$, then find the values of 1. (i) f(-2), (ii) f(0) and (iii) f(3)
- Resolve $\frac{1}{(x+1)(x+3)}$ into partial fractions
- If $A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & -6 \\ 0 & -1 & 3 \end{bmatrix}$, then find 2A 3B.
- Prove that $tan(45+A) \cdot tan(45-A) = 1$
- Prove that $\cos 10^{\circ} \cos 50^{\circ} \cos 70^{\circ} = \frac{\sqrt{3}}{8}$ 5.

- Find the modulus of the complex number $\left(\frac{3-4i}{5+7i}\right)$. 6.
- Find the distance between the two parallel lines 3x 4y + 7 = 0 and **7**. 3x - 4y + 5 = 0.
- Find $\lim_{r \to 2} \frac{x^4 16}{r 2}$. 8.
- 9. Differentiate $x.\sec x$ with respect to x.
- Differentiate $\log(1 + \tan^{-1}x)$. 10.

PART—B

(1) Answer **all** questions. **Instructions:**

- (2) Each question carries **eight** marks.
- (a) If $A = \begin{bmatrix} 2 & 7 & 13 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{bmatrix}$, find the adjoint and inverse of the matrix.

Solve the following system of equations using Cramer's Rule :

$$x + 2y - z = -3$$
, $3x + y + z = 4$ and $x - y + 2z = 6$

(a) If $\sin x + \sin y = \frac{3}{4}$ and $\sin x - \sin y = \frac{2}{5}$, then prove that

$$8\cot\frac{x-y}{2} = 15\cot\frac{x+y}{2}$$

OR

(b) Show that $\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \cos^{-1}\frac{36}{85}$

13. (a) Solve $\sin 6\theta \cos 2\theta = \sin 5\theta \cos \theta$

OR

- (b) In a $\triangle ABC$, if $A = 60^{\circ}$, then prove that $\frac{c}{a+b} + \frac{b}{c+a} = 1$.
- **14.** (a) Find the centre and radius of the circle

$$3x^2 + 3y^2 - 12x + 6y + 11 = 0$$

OR

- (b) Find the equation of the rectangular hyperbola whose focus is the point (1, 2) and directrix is the line 3x + 4y 5 = 0.
- **15.** (a) Find the derivative of $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$ with respect to $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$.

OR

(b) If $y = \sin(\log x)$, then show that $x^2y_2 + xy_1 + y = 0$.

PART

 $10 \times 1 = 10$

Instructions: (1) Answer the following question.

- (2) It carries ten marks.
- **16.** Find the lengths of tangent, normal, sub tangent and subnormal to the curve $y = x^3 2x^2 + 4$ at the point (2, 4).

 $\star\star\star$