C16-EC-305

6236

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL—2018
 DECE-THIRD SEMESTER EXAMINATION

NETWORK ANALYSIS

Time : 3 hours]
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State Ohm's law.
2. Draw ideal voltage source and ideal current source.
3. Define the terms 'junction', 'loop' and 'mesh' in circuits.
4. Determine the number of node voltage equations required to solve the following network :

5. State reciprocity theorem.
6. Give the transformation formulae for star to delta transformation.
7. Write Laplace transforms for unit-step function and exponential function.
8. What are initial conditions?
9. Define the terms 'characteristic impedance' and 'propagation constant'.
10. List the advantages of constant-k filters.

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Determine the current I_{3} in the following circuit using Kirchhoff's current law (KCL) :

(b) Find the voltage between A and B in the following circuit using Kirchhoff's voltage law (KVL) :

12. Find the mesh currents in the following network using mesh current analysis :

13. In the circuit shown below, determine the node voltages V_{1} and V_{2} using node voltage analysis :
14. Apply superposition theorem to the Network given below and find the voltage $V_{A B}$:

15. Determine the maximum power delivered to the load R_{L} in the following circuit :

16. (a) Derive an expression for the current in an $R L$ circuit (series RL circuit).
(b) A series $R L$ circuit with $R=50 \mathrm{ohms}$ and $L=10 \mathrm{H}$ has a constant voltage source $V=100 \quad V$ applied at $t=0$ and the inductor has no initial current. Find the equation for the current in the circuit.
17. Briefly explain (a) linear property (b) first shifting property and (c) change of scale property of Laplace transform.
18. Explain π-type attenuator with circuit diagram (symmetrical type).

