

C16-EC-305

6236

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL—2018 DECE—THIRD SEMESTER EXAMINATION

NETWORK ANALYSIS

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. State Ohm's law.
- 2. Draw ideal voltage source and ideal current source.
- 3. Define the terms 'junction', 'loop' and 'mesh' in circuits.
- **4.** Determine the number of node voltage equations required to solve the following network :

- **5.** State reciprocity theorem.
- **6.** Give the transformation formulae for star to delta transformation.
- **7.** Write Laplace transforms for unit-step function and exponential function.

- 8. What are initial conditions?
- **9.** Define the terms 'characteristic impedance' and 'propagation constant'.
- 10. List the advantages of constant-k filters.

PART—B

10×5=50

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Determine the current I_3 in the following circuit using Kirchhoff's current law (KCL):

(b) Find the voltage between A and B in the following circuit using Kirchhoff's voltage law (KVL):

12. Find the mesh currents in the following network using mesh current analysis:

- 13. In the circuit shown below, determine the node voltages V_1 and V_2 using node voltage analysis :
- **14.** Apply superposition theorem to the Network given below and find the voltage V_{AB} :

15. Determine the maximum power delivered to the load R_L in the following circuit :

16. (a) Derive an expression for the current in an RL circuit (series RL circuit).

(b) A series RL circuit with R 50 ohms and L 10 H has a constant voltage source V 100 V applied at t 0 and the inductor has no initial current. Find the equation for the current in the circuit.

- **17.** Briefly explain (a) linear property (b) first shifting property and (c) change of scale property of Laplace transform.
- **18.** Explain -type attenuator with circuit diagram (symmetrical type).

* * *

3

6

4