6234
 BOARD DIPLOMA EXAMINATION
 JUNE - 2019
 DIPLOMA IN DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING DIGITAL ELECTRONICS THIRD SEMESTER EXAMINATION

Time: $\mathbf{3}$ Hours
Total Marks: 80
$\underline{\text { PART - A } \quad(3 \mathrm{~m} \times 10=30 \mathrm{~m})}$
Note 1:Answer all questions and each question carries 3 marks
2:Answers should be brief and straight to the point and shall not exceed 5 simple sentences

1. What is the importance of parity Bit?
2. Find the 1 's complement to the following numbers
i) 1010112 and ii) 1110112
3. Convert the following binary numbers into Grey code
i) 111102 and ii) 100102
4. Define the following terms related to logic families i Propagation Delay ii) Noise margin iii) Fan-out
5. Compare the performance of serial adder and parallel adder with respect to following parameters
i) No. of Full adders and ii) Need of delay circuit
6. Draw the logic circuit of two bit digital comparator
7. State the need for Preset and clear inputs
8. List commonly used IC numbers of Flip-flops and counters
9. Distinguish between Edge Triggering and Level Clocking
10. Draw the diagram of shift left register

$$
\text { PART - B } \quad(10 \mathrm{~m} \times 5=50 \mathrm{~m})
$$

Note 1:Answer any five questions and each carries 10 marks
2:The answers should be comprehensive and the criteria for valuation is the content but not the length of the answer
11. Obtain the Logic expression for the output Y and simplify for the given logic diagram

$$
Y=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
$$

12. Obtain the Sum of product expression output from the given truth table and realize logic circuit using gates for the output

\mathbf{A}	\mathbf{B}	OUTPUT
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

13. a) Classify different Logic Families
b) Define the following terms related to logic families
i Propagation Delay ii) Noise margin iii) Fan-in
14. a) Draw the Half adder using NAND gates
b) Illustrate the concept of combinational logic circuits
15. a) Draw the working of BCD to Decimal Decoder
b) Explain the working of BCD to Decimal decoder using above logic diagram
16. a) Explain the race-around condition
b) Explain the function of clocked D flip-flop using above diagram and truth table
17. Explain the working of 4-bit Ring counter
18. a) Draw the 4-bit shift left register, truth table and its timing diagram b) Explain the function 4-bit shift left register with help of above diagram
