C-16-EC/CHPC/PCT-301

6232

BOARD DIPLOMA EXAMINATIONS

COMMON-THIRD SEMESTER

OCT/NOV-2019

ENGINEERING MATHEMATICS - II

Time: 3 hours

Max. Marks: 80

$\mathbf{PART} - \mathbf{A}$

 $3 \ge 10 = 30$

B. B.

- Instructions: 1. Answer all questions.
 - 2. Each question carries Three Marks.
 - 3. Answer should be brief and straight to the point and should not exceed Five simple sentences.

CUD

- ^{1.} Evaluate $\int (x + \frac{1}{x})^2 dx$
- ^{2.} Evaluate $\int \sin^2 x \, dx$
- ^{3.} Evaluate $\int_{-2}^{2} (x^{99} + x^2 + 5) dx$
- 4. Find the mean value of $f(t) = x^2 3x + 2$ between the values of x where the expression vanishes.
- 5. Find $L\{\cos^2 t\}$

*

- 6. Find $L^{-1} \left\{ \frac{1}{s(s-3)} \right\}$
- ^{7.} Obtain the value of a_0 in the half range cosine series expansion of f(x) = 3x + 1 in 0 < x < 2

[Cont..,

8. Find the order and degree of the Differential Equation

 $\log(\frac{dy}{dx}) = ax + by$ where a and b are constants.

9.

Solve
$$\frac{dy}{dx} = e^{2x+y}$$

10.

Solve
$$\frac{d^2y}{dx^2} + y = 0$$

PART – B

$$5 \ge 10 = 50$$

- 2. Each question carries **TEN** Marks.
- $\frac{1}{2} \frac{1}{2} \frac{1}$ 3. Answer should be comprehensive and a criterion for valuation is the content but not the length of the answer.

CUD

11.

a) Evaluate $\int sin^7 x cos^5 x dx$

b) Evaluate
$$\int \left(\frac{1}{5-3\cos x} \right) dx$$

12.

a) Evaluate
$$\int tan^{-1} x dx$$

b) Evaluate
$$\int_0^1 \frac{\cos^{-1} x}{\sqrt{1-x^2}} dx$$

13. (a) Find the area bounded by the curve $y = x^2 + 3x$ and x-axis

(b) Find the volume generated by revolving the Ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ about its minor axis.

[Cont..,

a) Calculate the approximate value of π from $\int_0^1 \frac{1}{1+x^2} dx$ 14.

using Trapezoidal's rule by dividing [0,1] into 4 equal parts.

b) Find L{t cos 2t}

^{15.} a) Find L⁻¹ {
$$\frac{s-3}{s^2-6s+5}$$
 }

Born Realisting District b) using Convolution theorem Find $L^{-1}\left\{\frac{1}{s(s^2+1)}\right\}$

Find the Fourier series for $f(x) = e^x$ in $0 < x < 2\pi$ 16.

^{17.} (a)Solve
$$\frac{dy}{dx} = \sin(x+y)$$

(b) solve $\frac{dy}{dx} + y \sec x = \tan x$

18.

Solve the following differential equations

a)
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = 0$$

b)
$$(D^2 - 1)y = \cosh 2x$$
, where $D = \frac{d}{dx}$