

C16-EC-301/C16-CHPC-301/C16-PCT-301

6232

BOARD DIPLOMA EXAMINATION, (C-16) JUNE-2019

DECE—THIRD SEMESTER EXAMINATION

ENGINEERING MATHEMATICS—II

[Total Marks : 80 Time: 3 hours]

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

- wiswer **all** questions.

 (2) Each question carries **three** marks.

 3: $\ln x + c^x$
- 1. Evaluate:

$$\int (\sin x + e^x + \csc^2 x) \, dx$$

2. Evaluate:

$$\int \frac{\sin(\log x)}{x} \, dx$$

Evaluate: 3.

$$\int_0^{\pi} \sin 3x \ dx$$

- Find the area bounded by the curve $y = \sin x$, the x-axis and the lines x = 04. and $x = \pi$.
- 5. Find $L\{3\sin 4t + 4\cos 3t\}$.
- Find $L^{-1} \left\{ \frac{s^2 + 4}{s^3} \right\}$.

- 7. Write the Fourier cosine series for a function f(x) in $(-\pi, \pi)$.
- Find the differential equation of the family of curves $y = Ae^{3x} + Be^{-3x}$, where 8. A and B are arbitrary constants.
- **9.** Solve $\frac{dy}{dx} = (x+1)(y+1)$.
- Solve $(D^2 18D + 77)y = 0$. 10.

PART-B

Instructions: (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- 11. (a) Evaluate:

$$\int \sin^7 \theta \cos^2 \theta \ d\theta$$

(b) Evaluate:

aluate :
$$\int \sin^7 \theta \cos^2 \theta \ d\theta$$
aluate :
$$\int \frac{1}{x^2 + 8x + 20} \ dx$$
aluate :

12. (a) Evaluate:

$$\int \frac{x}{(x+1)(x+2)} dx$$

(b) Show that

$$\int_0^{\pi/2} \frac{1}{1 + \tan x} \, dx = \frac{\pi}{4}$$

- 13. (a) Find the volume of the solid obtained by revolving the ellipse $9x^2 + 25y^2 = 225$ about *Y*-axis.
 - (b) Find the RMS value of $f(x) = xe^{2x}$ from x = 0 to x = 1.
- (a) Obtain the value of $\int_0^6 \frac{1}{1+x^2} dx$ by taking n = 6 using simpson's $\frac{1}{3}$ rule. 14.
 - (b) Find $L\{e^{4t}\sin 2t\cos t\}$.
- (a) Find $L^{-1}\left(\frac{4s+5}{(s-1)(s+2)}\right)$. 15.
 - (b) Using convolution theorem, find $L^{-1}\left\{\frac{1}{(s-1)(s-2)}\right\}$
- Obtain the Fourier series for the function $f(x) = x^2$ in the interval $(-\pi, \pi)$. 16.
- (a) Solve (x + y 2)dx + (x y + 4)dy = 017.
 - (b) Solve $\frac{dy}{dx} + \frac{y}{x} = 2x^3$. (a) Solve $(D^2 3D + 2)y = e^{2x}$. (b) Solve $(D^2 + 4)y = \sin 3x$.