

C16-A-AA-BM-CH-CHST-AEI-MNG-CHPP-EECHOT-MM-RAC-C-CM-CHPC EC-PET-MET-TT-IT-PCT-103

6003

BOARD DIPLOMA EXAMINATION, (C-16)
MARCH/APRIL-2021
FIRST YEAR (COMMON) EXAMINATION
ENGINEARING PHVSICS
(1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief\%d straight to the point and shall not exceed five simpkentences.

1. State any three advantages of SI units.
2. Define the following $\boldsymbol{5}^{\circ}$
(a) Unit vector
(b) Proper vectờ
(c) Negatise vector
3. Write ${ }^{\circ}$ the equations of motion of a body moving with uniform acseleration.
4. State the laws of simple pendulum.
5. Write any three differences between specific gas constant and universal gas constant.
*6. State any three methods of minimizing noise pollution.
6. State Newton's law of viscocity. What are the SI units of co-efficient of viscosity?
7. Define capillarity. Write formula for surface tension based on capillarity
8. State and explain Ohm's law.
9. Write any three applications of optical fibers.

PART—B

Instructions: (1) Answer any five questions.

(2) Each question carries ton markss "
(3) Answers should be comproensive and criterion for
valuation is the content byt not the length of the answer
11. (a) State any six properties of solar product.
and $\vec{B}=2 \hat{i}-3 \hat{j}+2 \hat{k}$ are represented by two adjacent sides of a parallelogram. Find the area of the parallelogram.
12. (a) Show that the path of a projectile in oblique projection is parabola.
(b) A ball is thrown vertically upwards from the top of a building with velocity $9.8 \mathrm{~m} / \mathrm{s}$ and it reaches the ground in 3 seconds. FFind the height of the building.
13. (a) Derive expression for acceleration of a body while moving upwards on a rough inclined plane.
(b) State any four laws of static friction.
14. (a) Define kinetic energy and derive expression for kinetic energy.
(b) If kinetic energy of a body is made 9 times of the initial value, keeping its mass constant, how many times does the momentum change?
15. (a) Derive expressions for velocity and acceleration of a particle executing simple harmonic motion.
(b) Find the length of seconds pendulum at a place where g^{k} $g=9.78 \mathrm{~m} / \mathrm{s}^{2}$.
16. (a) Derive the ideal gas equation, $P V=n R T$.
(b) On supplying 1800 J of heat energy to a gaseous system its volume increases by $5 \times 10^{-3} \mathrm{~m}^{3}$ at constant pressure $2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. Calculate the increase in internal energy of system.
17. (a) Write any four differences between my sal sound and noise.
(b) Define echo. Write four methods to Coninimize echoes.
18. (a) Derive the expression for magnetic induction field strength at a point on axial line of a dir magnet.
(b) Two resistances 20Ω aU 30Ω are connected in left and right gaps of a meter bri\&e. Find the balancing length.

