

С16-ЕС-103/С16-СНРС-103/С16-РЕТ-103

6029

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV-2017

DECE-FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

LSHNA Dist " A.P

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. State the limitations of dimensional analysis.
- **2.** Define scalar and vector quantities and give one example for each.
- 3. Derive the expression for range of projectile.
- 4. The equation of a particle executing SHM is given by $y = 10 \sin 4 t \frac{1}{3}$, where the quantities are in SI units. Find (a) amplitude, (b) angular velocity and (c) phase at time t = 0.
- 5. State Boyle's law and express its relation in terms of density.
- 6. State any three conditions for good auditorium.
- 7. State Hooke's law, define stress, strain.

* /6029

- 8. Define surface tension and give one example.
- **9.** State Coulomb's inverse square law in the case of magnetism and write the equation for the law.
- 10. Write any three applications of optical fiber.

PART—B

Instructions : (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

BK P. P.

10×5=50

11.	(a)	Define parallelogram law of vectors. Obtain an expression	
		for the magnitude and direction of the resultant vector. 2-	+5
	(b)	The magnitude of resultant of two equal forces is 1000 N.	
		Find the magnitude of each force if they are perpendicular.	3
12.	(a)	Define projectile and give one example.	2
	(b)	Derive equations for the maximum height and range of an	_
		object projected at a certain angle with the horizontal.	5
	(c)	A ball is projected into air by making an angle 45° to the	
		the q value as 9.8 m/s ² .	3
	1		U
13.	(a)	State the laws of friction.	3
	(b)	Derive the expression for an acceleration of a body sliding	
		down on a smooth inclined plant.	4
	(c)	Show that the coefficient of friction Tan , where is the angle of friction.	3
/602	29	2 [Contc	ł

*

- **14.** (a) Define the terms work, power and energy and state their units and dimensional formulae.
 - (b) If a force of $(2\hat{i} \quad 3\hat{j} \quad 4\hat{k}) N$ is applied on a body, the velocity attained is $(\hat{i} \quad \hat{j} \quad \hat{k})$ m/s. Find the power.

6

4

4

5

5

4

6 5

- 15. Derive expressions for (a) displacement, (b) velocity and(c) acceleration for a body in SHM.4+3+3
- **16.** (a) Derive $C_p = C_v = R$.
 - (b) Calculate the value of universal gas constant for one gram-mole gas at STP.
- 17. (a) What are beats? Mention three applications of beats.
 - (b) What is noise pollution? Write any three effects caused by noise pollution.
- **18.** (a) State and explain Kirchhoff's laws with neat sketch.
 - (b) Explain Wheatstone's bridge. 6