

с14-ес-606

4740

BOARD DIPLOMA EXAMINATION, (C-14)

OCT/NOV-2018

DECE—SIXTH SEMESTER EXAMINATION

DIGITAL CIRCUIT DESIGN THROUGH VERILOG HDL

Time : 3 hours]

[Total Marks : 80

PART-A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** What is timing simulation?
- 2. What is design entry?
- 3. What is planning placement and routing (PPR)?
- **4.** Write the features of Verilog HDL
- **5.** Write any three differences between an instantiation and inference of a component.
- 6. Define expressions, operators and operands.
- 7. List the advantages of hierarchical modelling.
- * /4740

[Contd...

- 8. Distinguish between sequential and parallel blocks.
- **9.** Write Verilog code for 2-bit comparator using dataflow modelling.
- **10.** Write Verilog code for D flip-flop with synchronous clock and reset using dataflow modelling.

PART—B

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- 11. Explain VLSI design flow.
- **12.** Explain four levels of abstraction to represent the internals of a module.
- 13. Explain about system tasks and compiler directives.

14.	(a)	Explain conditional statements.					
	(b)	Explain blocking and non-blocking procedural assignments with examples.	5				
15.	Design logic circuits for half subtractor and full subtractor using structural modelling.						

- 16. (a) Design RS flip-flip with synchronous clock and reset using behavioural modelling.
 5
 - (b) Design 3 to 8 decoder using behavioural modelling. 5
- **17.** Design SISO shift registers using behavioural and dataflow modelling.

18.	(a)	Write stimulus	module	for 4 :	1 multiplexer.	5
	(b)	Write stimulus	module	for JK	flip-flop.	5

 $10 \times 5 = 50$