

с14-ес-606

4740

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2018

DECE—SIXTH SEMESTER EXAMINATION

DIGITAL CIRCUIT DESIGN THROUGH VERILOG HDL

Time : 3 hours]

[Total Marks : 80

PART-A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** What is functional simulation?
- 2. Write the use of Verilog HDL in VLSI simulation.
- 3. List layout design rules.
- 4. What are port connection rules in a module instantiation?
- 5. Write about the data types, value sets, nets and registers.
- 6. Write about identifiers and keywords in Verilog.
- 7. What is User Defined Primitive?

* /4740

[Contd...

- 8. What is hierarchical modeling?
- **9.** Write Verilog code for 3 to 8 decoder using dataflow modeling.
- **10.** Write Verilog code for decade counter using dataflow modeling.

PART-B

10×5=50

Instructions	:	(1)	Answer	any	five	questions.
--------------	---	-----	--------	-----	------	------------

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

11.	(a)	Explain	VLSI	design	specif	fication	and	design	entry.	5
	(b)	Explain	stick	diagrar	ns.					5

12. Explain all types of operators used in Verilog HDL.

13.	(a)	Explain the importance of hardware description languages in VLSI design.	5					
	(b)	Explain defparam and localparam keywords.	5					
14.	(a)	Explain about initial and always statements.	5					
	(b)	Explain while, for, repeat and forever looping statements.	5					
15.	Des usi:	Design simple logic circuits for full adder and full subtractor using structural modeling.						
16.	(a)	Design 8 to 3 encoder using behavioural modeling.	5					
	(b)	Design J - K flip-flop with synchronous clock and reset using behavioral modeling.	5					
/474	40	2 [Conta	l					

*

- **17.** Design SISO shift registers and 4 : 1 multiplexer using dataflow modeling.
- **18.** (a) State and explain finite state machines. 5

* *

(b) Explain the structure of stimulus module.

* /4740

*

5