

с14-ес-403

4457

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2018 DECE-FOURTH SEMESTER EXAMINATION

NETWORK ANALYSIS

Time: 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point
- 1. Define ideal voltage source and practical voltage source.
- **2.** Define dot rule in coupled circuits.
- **3.** Define node, loop and branch of a network.
- 4. Draw the dual of given network

- **5.** Define superposition theorem.
- **6.** Define maximum power transfer theorem for AC load.
- **7.** Define initial condition and steady state response in transients.

/4457

- **8.** Define the Y-parameters of a two-port network.
- **9.** Define the terms Neper and Decible.
- **10.** Distinguish between attenuators and equalizers.

PART-B

10×5=50

Instructions: (1) Answer *any* **five** questions.

- (2) Each questions carries **ten** marks.
- (3) Answers should be comprehensive.
- 11. (a) State Kirchhoff's current law and Kinchhoff's voltage law.
 - (b) Find the voltages on 10Ω resistor using KCL.

12. Find the currents I_A , I_B , I_C using mesh analysis.

13. Determine voltages at nodes 1 and 2 for the circuit given below.

14. Verify reciprocity theorem to find the voltage V_x

15. Determine load impedance Z_L for maximum power transfer and find the maximum power.

16. Derive the expressions for Voltages across R and C for for t > 0, When switch is closed at t=0.

17. Find the Z parameters for the two port network given below.

18. Derive the expression for characteristic impedance of a symmetrical Π-Network.

/4457