

с14-ес-403

4457

BOARD DIPLOMA EXAMINATION, (C-14)

MARCH/APRIL-2017

DECE—FOURTH SEMESTER EXAMINATION

NETWORK ANALYSIS

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Explain dot rule for coupled circuits.
- **2.** Determine the equivalent voltage source for the current souce shown in the figure below :

- **3.** Give the mathematical equations for star to delta circuit transformation.
- **4.** Define Thevenin's theorem.
- 5. Define branch, junction and loop.
- * /4457

[Contd...

6. Draw the dual of the given network :

- 7. Define the terms transient and steady state.
- **8.** Give the conditions for reciprocity in terms of z, y and h parameters.
- **9.** Draw the characteristic curves for low-pass filter and high-pass filter.
- **10.** List the applications of equalizer circuit.

PART—B

10×5=50

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

11. (a) State Kirchhoff's current law and Kirchhoff's voltage law.

(b) Find the current through and voltage across each resistor in the given circuit :

[Contd...

12. For the circuit shown below, find the current across 2 ohms resistor using superposition theorem :

13. Find the Norton's equivalent circuit at terminals *AB* of the network shown in the figure below :

14. For the circuit shown below, find the currents i_1 , i_2 using mesh current analysis :

15. In the given network, find the voltage at node 2 using node voltage analysis :

* /4457

[Contd...

16. Explain the transient analysis of series RC circuit for DC excitation.

18. Design a low-pass T-section filter having a cut-off frequency of 2 kHz to operate with a terminated load resistance of 600 .