

C14-EC-403

4457

BOARD DIPLOMA EXAMINATION, (C-14)

MARCH/APRIL-2021

DECE - FOURTH SEMESTER EXAMINATION

NETWORK ANALYSIS

Time: 3 hours]

PART-A

Instructions: (1) Answer *any* **five** questions.

- (2) Each question carries four marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. State Ohm's law.
- 2. State Kirchhoff's current law and voltage law.
- 3. Define branch and loop in a circuit.
- 4. Determine the number of node voltage equations in a given network.
- 5. State Norton's theorem.
- 6. State maximum power transfer theorem.
- 7. Define the terms 'initial condition' and 'steady state'.
- 8. Define port of a network.
- 9. Define neper and decibel.
- **10.** State low-pass filter and high-pass filter.

/4457

[Contd...

4×5=20

[Total Marks : 80

Instructions: (1) Answer *any* **four** questions.

- (2) Each question carries fifteen marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- 11. Explain ideal voltage source and ideal current source.
- **12.** Determine the current I_1 and I_2 using mesh analysis :

13. Determine the voltage V_x using nodal analysis :

- **14.** List the advantages and limitations of *(i)* Thevenin's theorem, *(ii)* Norton's theorem and *(iii)* maximum power transfer theorem.
- **15.** Find the current through 15 Ω resistor in the circuit using superposition theorem :

/4457

[Contd...

- **16.** Explain the DC response for RC circuit.
- **17.** Explain the open-circuit impedance (z) parameters with equivalent circuit.
- **18.** Design a simple low-pass filter (LPF) for a given cut-off frequency and characteristic impedance.

*