

C14-EC-401/C14-CHPC-401/C14-PCT-**401**

4455

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2018 DECE-FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-III

Time : 3 hours]

[Total Marks : 80

PART—A

10×3=30

- Instructions: (1)
 - (1) Answer **all** questions.
 - (2) Each question carries three marks.
 - (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
 - **1.** Solve $(D^2+6D+9)y=0$
 - **2.** Solve $(D^3 3D^2 + 3D 1)y = 0$
 - **3.** Find the particular integral of $(D^3-1)y = e^{-x}$
 - **4.** Find $L_{3+5t+2} e^{t} + 8\sin 2t$
 - **5.** Find L{ Cos 4t Cos 2t}
 - **6.** Find $L\{t \text{ Sin } 2t\}$
 - **7.** Find $L^{-1} \{ t e^{-t} \text{ Sin } 3t \}$
 - **8.** Write down the Fourier series expansion of a function f(x) in the interval (*C*, *C* + 2π). Give the formula for finding the Fourier coefficients.
 - **9.** Find the value of b_n for the function f(x) = x in the interval $(0, \pi)$.

/4455

1

[Contd...

10. State the mathematical definition of probability.

- (1) Answer *any* **five** questions.
- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criteria for valuation is the content but not the length of the answer.
- **11.** *a*) Solve $(D^2 3D + 2)y = 5e^{3x}$

b) Solve $(D^2 + D + 1)y = 2 \sin 3x$

12. a) Solve $(D^2 - 4D + 4)y = e^x + \cos 2x$

b) Solve
$$(D^2 + 5D + 4)y = x^2 + 7x + 9$$

13. *a*) Find $L\{t (Sint + Cost)\}$

b) Find
$$L\left\{\frac{e^{2t}-e^{3t}}{t}\right\}$$

14. a) Find
$$L^{-1}\left\{\frac{S-2}{S^2+5S+6}\right\}$$

b) Using convolution theorem, find the inverse Laplace transform

of
$$\frac{1}{S(S^2+1)}$$

- **15.** Obtain the Fourier series of $f(x) = |\sin x|$ in the interval $(-\pi, \pi)$.
- **16.** Obtain half range cosine series for the function $f(x) = x^2$ in the interval $(0,\pi)$ and hence find the sum of the series $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + ... = \frac{\pi^2}{12}$
- **17.** a) Find the probability of getting two queens when two cards are drawn from a pack of 52 cards.

b) Let A and B be two events with $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{4}$ find (i) P(A/B) (ii) $P(A \cup B)$

18. Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that was drawn from Bag II.

/4455