4455

BOARD DIPLOMA EXAMINATION, (C-14)
 MARCH / APRIL-2018 DECE-FOURTH SEMESTER EXAMINATION
 ENGINEERING MATHEMATICS-III

Time : 3 hours]

PART-A
$10 \times 3=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Solve $\left(D^{2}+6 D+9\right) y=0$
2. Solve $\left(D^{3}-3 D^{2}+3 D-1\right) y=0$
3. Find the particular integral of $\left(D^{3}-1\right) y=e^{-x}$
4. Find $L\left\{3+5 t+2 e^{t}+8 \sin 2 t\right\}$
5. Find $L\{\operatorname{Cos} 4 t \operatorname{Cos} 2 t\}$
6. Find $L\{t \operatorname{Sin} 2 t\}$
7. Find $L^{-1}\left\{t e^{-t} \operatorname{Sin} 3 t\right\}$
8. Write down the Fourier series expansion of a function $f(x)$ in the interval $(C, C+2 \pi)$. Give the formula for finding the Fourier coefficients.
9. Find the value of b_{n} for the function $f(x)=x$ in the interval $(0, \pi)$.
10. State the mathematical definition of probability.

> PART—B

Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criteria for valuation is the content but not the length of the answer.
11. a) Solve $\left(D^{2}-3 D+2\right) y=5 e^{3 x}$
b) Solve $\left(D^{2}+D+1\right) y=2 \sin 3 x$
12. a) Solve $\left(D^{2}-4 D+4\right) y=e^{x}+\cos 2 x$
b) Solve $\left(D^{2}+5 D+4\right) y=x^{2}+7 x+9$
13. a) Find $L\{t(\operatorname{Sin} t+\operatorname{Cos} t)\}$
b) Find $L\left\{\frac{e^{2 t}-e^{3 t}}{t}\right\}$
14. a) Find $L^{-1}\left\{\frac{S-2}{S^{2}+5 S+6}\right\}$
b) Using convolution theorem, find the inverse Laplace transform
of $\frac{1}{S\left(S^{2}+1\right)}$
15. Obtain the Fourier series of $f(x)=|\sin x|$ in the interval $(-\pi, \pi)$.
16. Obtain half range cosine series for the function $f(x)=x^{2}$ in the interval $(0, \pi)$ and hence find the sum of the series $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12}$
17. a) Find the probability of getting two queens when two cards are drawn from a pack of 52 cards.
b) Let A and B be two events with $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(A \cap B)=\frac{1}{4}$ find (i) $P(A / B)$ (ii) $P(A \cup B)$
18. Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that was drawn from Bag II.

