

с14-ес-305

4241

BOARD DIPLOMA EXAMINATION, (C-14)

OCT/NOV—2017

DECE—THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time: 3 hours]

[Total Marks : 80

PART-A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Convert the following numbers :
 - (a) $(FE7)_{16}$ ()₁₀
 - (b) $(753)_{10}$ ()₈
- 2. Compare weighted and unweighted codes.
- **3.** Develop AND and NOT gates using NAND gates only.
- **4.** List any three IC numbers of two-input digital logic gates.
- 5. Develop half-adder using NAND gates.
- 6. Draw logic circuit digital comparator.
- 7. State the necessity of clock.
- 8. What is race around condition? How can it be avoided?

* /4241

[Contd...

- **9.** List any three applications for (a) flip-flops and (b) registers.
- **10.** Write any three differences betweeen static RAM and dynamic RAM.

10×5=50

5

5

Instructions : (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Perform subtraction of a given binary number using 1's complement method : 3+3=6
 - *(i)* 1110-1001
 - *(ii)* 0101-1101
 - (b) State any four postulates in Boolean algebra. 4
- **12.** (a) State and prove De Morgan theorems.
 - (b) Write Boolean expression of sum of min terms from the following truth table and simplify :

	Input		Output
A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

13.	(a) Define propagation delay and noise margin.				
	<i>(b)</i> Draw and explain the working of TTL NAND gate with open collector output with circuit.	6			
14.	• (a) Explain the working of 'serial adder' with a block diagram.				
	(b) Draw and explain the operation '4 1 MUX'.	5			
15.	(a) Explain the working of decimal to BCD encoder circuit.				
	(b) State the need for a tristate buffer.	3			
16.	Explain the operation of 'master-slave J - K flip-flop' with neat sketch.				
17.	Draw and explain the working of 4-bit bidirectional sift register with timing diagram.				
18.	(a) Distinguish between synchronous and asynchronous counters.	4			
	(b) Explain the working of basic dynamic MOS RAM cell.	6			

*

*

5