

C14-EC-301/C14-CHPC-301/C14-PCT-301

4237

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2016 DECE-THIRD SEMESTER EXAMINATION

ENGINEERING MATHEMATICS—II

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- 1. Evaluate:

$$\sqrt{1 \sin 2} d$$

2. Evaluate:

$$\frac{e^{\tan^{-1}x}}{1-x^2}dx$$

3. Evaluate:

$$x^2e^xdx$$

4. Evaluate:

$$(x^{10})$$
 1) dx

- **5.** Find the area enclosed by the curve $y = x^2$, the *x*-axis and the lines x = 3 and x = 5.
- **6.** Find the differential equation for $y = A\cos 3x = B\sin 3x$, where A and B are constants.
- **7.** Solve :

$$x^6 dy \quad y^6 dx \quad 0$$

8. Solve :

$$\frac{dy}{dx}$$
 $\frac{2y}{x}$ $3x$

- 9. Find the median and mean of 46, 64, 87, 41, 58, 77 and 35.
- 10. Calculate the variance of 1, 5, 6, 4, 7 and 13.

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- **11.** (a) Evaluate :

$$\cos 7x \cos 2x \, dx$$

(b) Evaluate:

$$\sin^5 x \cos^3 x \, dx$$

12. (a) Evaluate :

$$\frac{1}{x^2 \quad 8x \quad 20} dx$$

(b) Evaluate:

$$\frac{x}{(x} \frac{7}{2)(x} \frac{3}{3}$$

13. (a) Evaluate:

$$x \sin 2x \, dx$$

(b) Prove that

$$\int_{0}^{/2} \frac{\sin x}{\sin x + \cos x} dx = \frac{1}{4}$$

- **14.** (a) Find the area enclosed between the two parabolas $y^2 4x$ and $x^2 4y$.
 - (b) Find the volume of the solid formed by revolving the area enclosed by the curve y x^3 , the y-axis and the lines y 0 and y 8 about the y-axis.
- **15.** (a) Find the RMS value of $\sqrt{27}$ $4x^2$ from x = 0 and x = 3.
 - (b) A curve is drawn to pass through the points given in the following table:

x	1	1.5	2	2.5	3	3.5	4
y	3	3.4	3.7	2.8	2.7	2.6	2.1

Calculate the area bounded by the curve, x-axis and the lines x 1 and x 4 using Simpson's rule.

16. Solve :

$$(x^2 \quad y^2)dx \quad 2xydy$$

$$(x \quad y \quad 2)dx \quad (x \quad y \quad 4)dy \quad 0$$

$$\frac{dy}{dx}$$
 $y \tan x \sec x$

18. Find the quartile deviation and also mean deviation from mean for the following data :

х	4	8	11	17	20	24	32
f	3	5	9	5	4	3	1