

C-14-CHPC/EC/PET-103

4035

BOARD DIPLOMA EXAMINATION, (C-14)

APRIL/MAY-2015

DECE—FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Write the advantages of SI units.
- 2. Define vector and scalar and give one example for each.
- 3. Define acceleration due to gravity and write its SI unit.
- **4.** The displacement of a particle in SHM is given by $y \ 6 \sin(0 \ 2 \ t \ / 4)$. Find *(i)* amplitude, *(ii)* time period and *(iii)* initial phase.
- **5.** Define absolute zero and write the relation between absolute temperature and centigrade temperature.
- **6.** Define beat. Write any two applications of beat.
- 7. Define capillarity. Give an example.
- * /4035

[Contd...

- **8.** Write the Poiseuille's equation for the coefficient of viscosity explaining the terms involved.
- **9.** The force between two short magnets is *F*, when the pole strengths are doubled and distance between the magnets is halved, what is the force between them?
- **10.** Write any three applications of optical fibers.

PART—B

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

11.	(a)	the magnitude and direction of their resultant vector.	7
	(b)	Two forces of magnitude of 30 N and 40 N are acting on a body perpendicular to each other. Find the resultant forces both in magnitude and direction.	3
12.	(a)	Show that the path of the projectile in oblique projection is a parabola.	6
	(b)	A ball is thrown at an angle 30° to the horizontal with an initial velocity of 20 m/s. Find its <i>(i)</i> maximum height reached and <i>(ii)</i> horizontal range.	4
13.	(a)	Write any four methods of minimizing friction.	4
	(b)	Derive the expression for the acceleration of a body moving <i>(i)</i> upwards and <i>(ii)</i> downwards on a rough inclined plane.	6
14.	(a)	Define Work, Power and Energy and write their SI units and dimensional formula.	6

(b) An engine lifts 2500 litres of water per minute from a well30 m deep. If 25% of energy is wasted, find its power.

/4035

[Contd...

 $10 \times 5 = 50$

c

2

15.	(a)	Write the conditions of simple harmonic motion.	4		
	(b)	Derive an expression to find the time period of a simple pendulum.	6		
16.	(a)	State gas laws.	3		
	(b)	Derive ideal gas equation.	5		
	(c)	One litre of air is heated from 27 °C to 177 °C at constant pressure. Find its volume.	2		
17.	(a)	Define noise pollution.	2		
	(b)	Write any four effects of noise pollution and write any four controlling methods to minimize noise pollution.	8		
18.	(a)	Describe how the specific resistance of a given wire can be determined using meterbridge.	7		
	(b)	If 10 and 30 are connected in left and right gaps in meterbridge experiment, find balance length.	3		

*

*