

со9-ес-306

3238

BOARD DIPLOMA EXAMINATION, (C-09)

APRIL/MAY-2015

DECE—THIRD SEMESTER EXAMINATION

CIRCUIT THEORY

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Distinguish between DC and AC.
- 2. Explain phase difference briefly.
- **3.** Distinguish between series and parallel resonance circuits.
- 4. Define the following terms :
 - (a) Branch
 - (b) Loop
 - (c) Mesh
- **5.** Define the driving point impedance and transfer impedance of a network.
- 6. Write the advantages of maximum power transfer theorem.

* /3238

1

[Contd...

- 7. State the superposition theorem.
- **8.** Define the time constant of an *R*-*C* circuit.
- 9. Explain dot convention used in coupled circuits.
- 10. Draw the high-pass R-C circuit and low-pass R-C circuit.

PART—B

10×5=50

5

5

6

4

6

Instructions : (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) A sinusoidal voltage V(t) 200 sin 1000t is applied across a pure capacitor of 100 microfarads. Find current and charge.
 - (b) Derive the expressions for current and power of a pure resistor circuit with a.c. source.
- **12.** (a) Explain V-I characteristic of series R-L-C circuit with a.c. source.
 - (b) Derive the expression of resonant frequency of the series R-L-C circuit.
- **13.** (a) For the following circuit, find the current in the 5 ohm resistor :

[Contd...

(b) Obtain the star-equivalent circuit for the delta-connected circuit shown below :

14. (a) Determine the voltage of nodes 1 and 2 in the network shown below :

- (b) Write the limitations of Ohm's law.
- **15.** (a) Convert the given voltage source into equivalent current source :

(b) Obtain the Thevenin's equivalent circuit for the bridge circuit shown below :

3

[Contd...

4

6

4

4

* /3238

16. (a) State the reciprocity theorem and give the limitations.

(b) Find the value of load resistance for which the source delivers maximum power to it and also find the maximum power transferred :

- **17.** (a) Explain how a low-pass *R*-*C* circuit works as an integrator. 5
 - (b) Explain the reflected impedance significance in coupled circuit and give the expression for the reflected impedance.
- **18.** (a) Explain the response of a high-pass *R*-*C* circuit for pulse input.
 - (b) Mention the applications of integrator and differentiator circuits.

* * 7

4

5

5

5

5