3238

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV-2014
 DECE-THIRD SEMESTER EXAMINATION

 CIRCUIT THEORYTime : 3 hours]
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. What is the capacitance of a capacitor if a charging current of 100 mA flows when 40 V voltage is applied at a frequency of 50 Hz ?
2. Define electrical resonance.
3. Distinguish between DC and AC.
4. Define the following :
(a) Driving point impedance
(b) Transfer impedance
5. Find the current I_{1} and voltage V_{1} in the circuit shown below :

6. A constant current source develops a terminal voltage of 9 V when a $500-\Omega$ resistor is connected across its terminals. What is its terminal voltage when the $500-\Omega$ resistor is replaced by a $1 \cdot 5-\mathrm{k} \Omega$ resistor?
7. State Thevenin's theorem.
8. Define (a) coefficient of coupling and (b) critical coupling.
9. Define the term linear wave shaping.
10. Define time constant of series $R-C$ circuit.

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Explain the $V-I$ characteristics of a series L - C circuit with a.c. source.
(b) A sinusoidal voltage $v(t)=100 \sin 100 t$ is applied across a pure inductive coil of inductance $L=0.01 \mathrm{H}$. Determine (i) current $i(t)$ and (ii) instantaneous power $p(t)$.
12. For the circuit shown below, determine the total current, the phase angle and total impedances in the circuit :

13. Determine the voltages at nodes 1 and 2 of the network shown below by using nodal analysis :

14. Using mesh analysis, find the current in each resistor shown in the circuit below :

15. Find the Thevenin's equivalent circuit with respect to terminals $A-B$ in the circuit shown below :

16. For the circuit shown below, find the value of R_{L} which results in maximum power transfer. Also calculate the value of the maximum power :

17. For the circuit shown below-

(a) find the time constant;
(b) find the value of $i(t)$ after the switch has been closed for 1.5 time constants;
(c) find the voltage $V_{R}(t)$ at $t=1.5 \tau$.
18. Explain the effect of reflected impedance in a double-tuned mutual inductive coupled circuit for different degrees of coupling.

