

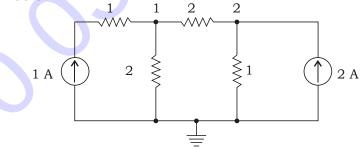
со9-ес-306

3238

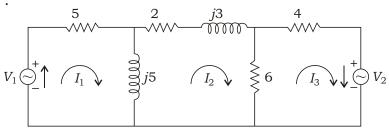
BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL—2014 DECE—THIRD SEMESTER EXAMINATION

CIRCUIT THEORY

Time : 3 hours]


[Total Marks : 80

PART—A


3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** A coil has an inductance of 1 H. If the current flowing through it changes at the rate of 2 A/s, what would be the voltage induced in the coil?
- 2. State the differences between active and passive circuit elements.
- 3. Distinguish between series and parallel resonances.
- **4.** Write the node voltage equations required to solve the network shown below :

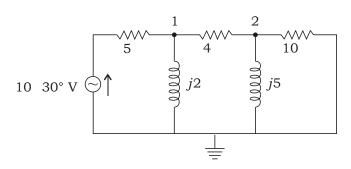
5. Write the mesh equations required to solve the network shown below :

6. List any three advantages of Thevenin's and Norton's theorems.

* /3238

[Contd...

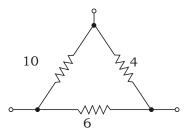
- 7. State the maximum power transfer theorem.
- **8.** Two coupled coils with $L_1 = 20 \text{ mH}$, $L_2 = 10 \text{ mH}$ and k = 0.5 are connected in series aiding. Find their equivalent inductance.
- 9. Mention the use of differentiator and integrator circuits.
- **10.** Define the term linear wave shaping.

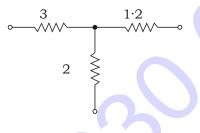

PART—B

Instructions : (1) Answer any **five** questions.

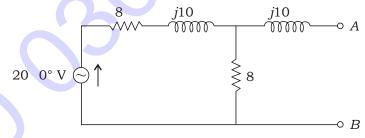
- (2) Each question carries **ten** marks.
 - (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

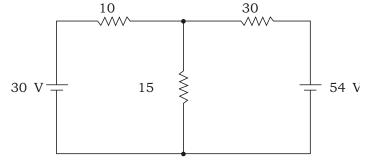
11.	(a)	Derive expression for the resonant frequency of a series resonant <i>R-L-C</i> circuit.	3
	(b)	Define bandwidth and selectivity.	4
	(c)	Plot the frequency versus current variation curve.	3
12.	(a)	Draw and write the expression for the resonant frequency of the following parallel circuits : (i) L, C, (ii) R-L, C and (iii) L, C-R	5
	(b)	Find the total current to the parallel circuit with $L = 0.05 \text{ H}$	


- and C = 0.667 F with an applied voltage of $v = 200 \sin 5000t$ V. 5
- **13.** Determine the voltage of nodes 1 and 2 in the network shownbelow using input and transfer admittances :10


[Contd...

 $10 \times 5 = 50$


14. (a) Convert the delta network shown in the figure to an equivalent star network :


(b) Convert the star network shown in the figure to an equivalent delta network :

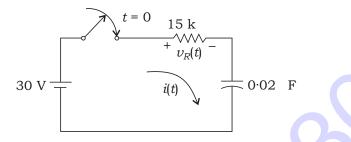
- **15.** (a) Explain ideal voltage source and ideal current source briefly.
 - (b) Obtain Thevenin's equivalent circuit at the terminals A, B for the circuit shown in the figure :

16. Using the superposition theorem, find the current flowing in the 15 resistor shown in the figure : 10

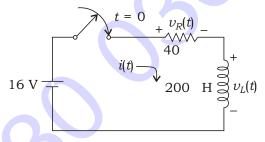
3

* /3238

[Contd...


5

5


2

8

- 17. For the circuit shown below :
 - (a) Find the time constant;
 - (b) After how many time constants will the current have decayed to one-half of its maximum value?

- (c) Explain the terms steady state and transient state briefly. 4
- **18.** (a) The switch in the following figure is closed at t = 0. Write the mathematical expressions for $V_L(t)$, i(t) and $V_R(t)$ after the switch is closed.

(b) Draw (i) high-pass R-C circuit and (ii) low-pass R-C circuit. 2

* * *

4

*

8