

3237

BOARD DIPLOMA EXAMINATION, (C-09) SEPTEMBER/OCTOBER - 2020 DECE—THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time: 3 hours] [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Compare weighted and unweighted codes.
- 2. State De Morgan's theorems.
- 3. List any three digital logic families.
- 4. Draw half-adder circuit and write its truth table.
- **5.** State the need for a tri-state buffer.
- **6.** Define modulus of a counter.
- 7. Draw the circuit of NAND latch and write its truth table.
- **8.** State the need for preset and clear inputs in a flip-flop.
- 9. Compare static RAM and dynamic RAM.
- 10. Define the terms 'resolution' and 'accuracy' for a D/A converter.

PART—B	10×5=50

Inst	ructions: (1) Answer any five questions. (2) Each question carries ten marks.	
	(3) Answers should be comprehensive and the criterion for valuation is the content but not the length the answer.	
11.	(a) Realize the basic gates using NAND and NOR gates.	6
	(b) Explain the importance of parity bit.	4
12.	Draw CMOS NAND gate circuit and explain its operation. 5+5=1	.0
13.	(a) Explain the working of a serial adder with block diagram.	7
	(b) Compare the performance of serial adder and parallel adder.	3
14.	Draw the circuit diagram of BCD to Decimal Decoder and explain its working. 5+5=1	.0
15.	(a) Explain the working of level clocked <i>J-K</i> flip-flop with truth table and circuit diagram.	7
	(b) Write about race around condition.	3
16.	Draw and explain the working of 4-bit shift left register. 5+5=1	.0
17.	Explain D/A conversion using binary weighted resistors method.	.0
18.	(a) Define the terms (i) memory read operation, (ii) memory write operation and (iii) memory access time.(b) Distinguish between EEPROM and UVPROM.	6 4

* * *

* **/3237** 2 AA20—PDF