co9-EC-305

3237

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2013

 DECE-THIRD SEMESTER EXAMINATIONDIGITAL ELECTRONICS

Time : 3 hours]

PART-A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. Explain the uses of the following alphanumeric codes :
(a) ASCII
(b) EBCDIC
2. Construct a given decimal number into octal and hexadecimal number system :
(a) 908
(b) 76
(c) 753
3. State De Morgan's theorems.
4. State the need for a tri-state buffer.
5. Draw the logic circuit of one bit comparator.
6. Write the need for preset and clear inputs.
7. List any two IC numbers for-
(a) flip-flops;
(b) registers;
(c) counters.
8. Draw NAND and NOR latches.
9. Define the following terms :
(a) Resolution
(b) Monotonocity
(c) Accuracy
10. Write any three differences between flash ROM and NV RAM.

PART-B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. Draw and explain CMOS NAND gate and explain its operation. $4+6$
12. By applying De Morgan's theorems and postulates simplify the logic expressions :
(a) $\overline{(A+B) \overline{C D}+E+\bar{F}}$
(b) $\overline{(\overline{A+B})+\bar{C}}$
13. Draw and explain 2's compliment parallel adder-subtractor.
14. (a) Draw and explain master/slave $J-K$ flip-flop.

5
(b) Draw and explain level clocked D flip-flop with the help of truth table.
15. (a) Realise a half-adder using NOR gates only. 4
(b) Draw and explain 3×8 decoder.
16. Draw and explain the working of universal shift register. $4+6$
17. Explain $A-D$ conversion using successive approximation method.
18. (a) Explain the working principle of NV RAM.
(b) Differentiate between EEPROM and UVPROM.

