

со9-ес-305

3237

BOARD DIPLOMA EXAMINATION, (C-09)

OCT/NOV-2013

DECE—THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time : 3 hours]

[Total Marks : 80

PART-A

Instructions : (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answer should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Explain the uses of the following alphanumeric codes :
 - (a) ASCII
 - (b) EBCDIC
- **2.** Construct a given decimal number into octal and hexadecimal number system :
 - *(a)* 908
 - *(b)* 76
 - *(c)* 753
- **3.** State De Morgan's theorems.

* /3237

[Contd...

- 4. State the need for a tri-state buffer.
- **5.** Draw the logic circuit of one bit comparator.
- **6.** Write the need for preset and clear inputs.
- 7. List any two IC numbers for—
 - (a) flip-flops;
 - (b) registers;
 - (c) counters.
- 8. Draw NAND and NOR latches.
- 9. Define the following terms :
 - (a) Resolution
 - (b) Monotonocity
 - (c) Accuracy
- 10. Write any three differences between flash ROM and NV RAM.

PART-B

Instructions : (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** Draw and explain CMOS NAND gate and explain its operation. 4+6

[Contd...

12.	By applying De Morgan's theorems and postulates simplify the logic expressions :	
	(a) $\overline{(A \ B)}\overline{C}\overline{D} \ E \ \overline{F}$	5
	(b) $\overline{(\overline{A} \ \overline{B})} \ \overline{C}$	5
13.	Draw and explain 2's compliment parallel adder-subtractor	
101	4	+6
14.	(a) Draw and explain master/slave J-K flip-flop.	5
	(b) Draw and explain level clocked <i>D</i> flip-flop with the help of truth table.	5
15.	(a) Realise a half-adder using NOR gates only.	4
	(b) Draw and explain 3 8 decoder. 3	+3
16.	Draw and explain the working of universal shift register. 4	+6
17.	Explain <i>A-D</i> conversion using successive approximation method. 4	+6
18.	(a) Explain the working principle of NV RAM.(b) Differentiate between EEPROM and UVPROM.	+3 4

 $\star\star\star$

*

*