

C09-A-102/C09-AA-102/C09-AEI-102/C09-BM-102/ C09-C-102/C09-CM-102/C09-CH-102/C09-CHPC-102/ C09-CHPP-102/C09-CHOT-102/C09-CHST-102/C09-EC-102 /C09-EE-102/C09-IT-102/C09-M-102/C09-MET-102/

C09-MNG/C09-PET-102/C09-TT-102/C09-RAC-102

3002

BOARD DIPLOMA EXAMINATION, (C-09)

OCT/NOV-2015

FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—I

Time : 3 hours]

[Total Marks : 80

PART—A

 $3 \times 10 = 30$

Instructions : (1) Answer all questions.

(2) Each question carries three marks.

1. Find the quotient and remainder, when $6x^3 ext{ 19}x^2 ext{ x 29}$ is divided by $2x ext{ 3}$.

2. If
$$x = \frac{1}{x}$$
 3, then find the value of $x^2 = \frac{1}{x^2}$

- **3.** Resolve $\frac{3x \ 1}{(x \ 2)(x \ 3)}$ into patial fractions.
- **4.** Given that $\tan A = \frac{5}{6}$ and $\tan B = \frac{1}{11}$, prove that $A = B = \frac{1}{4}$.

* /3002

[Contd...

5. Prove that

$$\frac{1 \cos 2}{\sin 2} \quad \text{cot}$$

- **6.** If z = 3 = 4i, then calculate the value of $z\overline{z}$ and $z = \overline{z}$.
- 7. Find the equation of the line passing through the point (3, 4) and perpendicular to the line $5x \ 3y \ 1 \ 0$.
- **8.** Find the equation of the circle with centre at (2, 3) and radius 4.
- **9.** Find :

$$\lim_{x \to 4} \frac{x + 4}{x^3 + 64}$$

10. Find $\frac{d}{dx}$, if $x \ a \cos$ and $y \ b \sin$

PART—B

10×5=50

Instructions : (1) Answer any five questions.

(2) Each question carries ten marks.

11. (a) Solve the equations

using Cramer's rule.

(b) Prove that

$$\begin{vmatrix} a & b & c \\ a & b & b & c & c & a \\ b & c & c & a & b \end{vmatrix} a^3 b^3 c^3 3abc$$

* /3002

[Contd...

12. (a) In ABC, prove that

$$\sin 2A \quad \sin 2B \quad \sin 2C \quad 4\sin A \quad \cos B \quad \cos C$$

(b) Prove that

$$\tan^{-1}\frac{1}{3}$$
 cot ¹(7) $\tan^{-1}\frac{1}{2}$

- **13.** (a) Solve : $4 \cos 6 \sin^2 0$
 - (b) Solve the ABC with $a = 2, c = \sqrt{6}$ and C = 60.
- **14.** (a) Find the equation of the parabola with focus (3, 4) and vertex (3, 2).
 - (b) Find the eccentricity, foci, length of latus rectum and directrices of the ellipse $25x^2$ $16y^2$ 1600.
- **15.** (a) Find the equation of rectangular hyperbola whose focus is (2, 3) and directrix is the line 3x 4y 5.
 - (b) Find the perimeter and centroid of the triangle formed by the points (2, 3, 7), (4, 1, 7) and (5, 11, 3).

16. (a) Find
$$\frac{dy}{dx}$$
, if
 $y \sin x^{\sin x \sin x \sin x \cdots}$

(b) If

$$u \tan \frac{1}{x} \frac{x^2}{x} \frac{y^2}{y}$$

prove that
$$x - \frac{u}{x} = y - \frac{u}{y} = \frac{1}{2} \sin 2u$$

* /3002

[Contd...

- **17.** (a) Find the angle between the curves $x^2 + y^2 = 8$ and $x^2 + 2y$.
 - (b) The displacement(s) of a particle is given at any time t by the relation $s 2t^3 15t^2 36t 70$. Find its (i) initial velocity, (ii) time when velocity is zero.
- **18.** (a) Find the two positive numbers x and y such that $x \ y \ 35$ and x^2y^5 is maximum.
 - (b) If the radius of a spherical balloon is increased by 0.2%, find the approximate percentage increase in volume.