

C09-CHPC-102/C09-EC-102/C09-PET-102

3028

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2014
 DECE-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I
Time : 3 hours]
Total Marks : 80

PART-A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Simplify $2[a+b-\{3 a-4 b-(3 a-\overline{2 a-6})\}]$.
2. Solve $x^{3}+6 x^{2}+11 x+6=0$.
3. Resolve into partial fractions

$$
\frac{6-5 x}{(x-2)(x+1)}
$$

4. Show that $\tan 3 A-\tan 2 A-\tan A=\tan 3 A \tan 2 A \tan A$.
5. If $\sin A=\frac{4}{5}$ and A is an acute angle, find $\sin 2 A+\cos 2 A$.
6. Find the modulus-amplitude form of $\sqrt{3}+i$.
7. Find the angle between the lines $2 x-y+3=0, x+y-2=0$.
8. Find the equation of the circle having the points $(3,4)(7,-2)$ as the end points of a diameter.
9. Evaluate :

$$
\operatorname{Lt}_{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta \cdot \sin \theta}
$$

10. If $y=x \cdot \log x$, find $\frac{d y}{d x}$.

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Solve

$$
\begin{array}{r}
x+y+z=3 \\
x+2 y+3 z=4 \\
x+4 y+9 z=6
\end{array}
$$

using Gauss-Jordan method.
(b) Show that

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+a & 1 \\
1 & 1 & 1+a
\end{array}\right|=a^{2}(a+3)
$$

12. (a) If $A+B+C=180$, prove that

$$
\cos 2 A+\cos 2 B-\cos 2 C=1-4 \sin A \sin B \cos C
$$

(b) Solve $\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\tan ^{-1}\left(\frac{1}{2}\right)$.
13. (a) Solve $2 \cos ^{2} \theta+11 \sin \theta-7=0$.
(b) Prove that

$$
\frac{a^{2} \sin (B-C)}{\sin A}=b^{2}-c^{2}
$$

14. (a) Find the equation of the parabola given that its axis is parallel to x-axis and passing through the points $(-1,2),(2,0),(0,4)$.
(b) Find the equation of the ellipse whose focus is $(4,3)$, directrix is $x+y-2=0$ and $e=2 / 5$.
15. (a) Find the equation of the hyperbola with vertex $(\pm 3,0)$, foci $(\pm 4,0)$.
(b) Find the angle between the two lines whose dr's are $(1,-2,1)$ and (1, 1, 0).
16. (a) Find $\frac{d y}{d x}$, if $y=(x)^{\sin x}$.
(b) If $U=\log (x+y+z)$, prove that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=1
$$

17. (a) Find the angle between the curves $x^{2}+y^{2}=8$ and $x^{2}=2 y$.
(b) A particle is moving along a line according to the law $s=2 t^{3}-3 t^{2}+15 t+18$ (t in second). Find its velocity when acceleration is zero.
18. (a) Find the maxima and minima of $2 x^{3}-9 x^{2}+12 x+15$.
(b) Radius of a spherical balloon is increased by $0 \cdot 1 \%$. Find the approximate percentage increase in its volume.
