

C09-CHPC-102/C09-EC-102/C09-PET-102

3028

BOARD DIPLOMA EXAMINATION, (C-09)
 MARCH/APRIL-2014 DECE-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

PART-A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. If

$$
u(x, y)=\frac{x^{3}+y^{3}}{x+y}
$$

show that $u(k x, k y)=k^{2} u(x, y)$.
2. Express $x^{2}+3 x+5$ in the form $A^{2}+B^{2}$.
3. Resolve

$$
\frac{2 x+1}{(x-1)(x+3)}
$$

into partial fractions.
4. Show that

$$
\tan \left(45^{\circ}+\theta\right)=\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}
$$

5. Show that

$$
\frac{\cos 3 A+\cos A}{\sin 3 A+\sin A}=\cot 2 A
$$

6. Find the modulus of

$$
\frac{7+24 i}{3+4 i}
$$

7. Find the equation of the straight line passing through the point $(-4,3)$ and perpendicular to the line $x+y+1=0$.
8. Find the equation of the circle whose centre is $(2,3)$ and radius is 4 .
9. Find

$$
\lim _{x \rightarrow 0} \frac{\sin 7 x}{\tan 5 x}
$$

10. Find the derivative of $\tan x \cdot \log x$ with respect to x.

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Solve

$$
\begin{array}{r}
2 x+y+z=2 \\
x+3 y-z=5 \\
3 x+2 y+2 z=3
\end{array}
$$

by matrix inversion method.
(b) Show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right|=(a-b)(b-c)(c-a)
$$

12. (a) If $A+B+C=180^{\circ}$, then show that

$$
\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C
$$

(b) Show that

$$
\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{13}=\cot ^{-1} \frac{9}{2}
$$

13. (a) Solve $\sqrt{3} \cos \theta+\sin \theta=1$.
(b) In any triangle $A B C$, show that $\Sigma a \sin (B-C)=0$.
14. (a) Find the equation of the parabola whose focus is $(5,2)$ and vertex is $(3,2)$.
(b) Find the equation of the ellipse whose focus is $(1,2)$, directrix is $x-y+3=0$ and eccentricity is $\frac{1}{2}$.
15. (a) Find the centre, foci, vertices and equations of directrices of the hyperbola $9 x^{2}-16 y^{2}=144$.
(b) Show that the points $(1,1,1),(-2,4,1)$ and $(-1,5,5)$ form an isosceles right-angled triangle.
16. (a) If $x^{3}+y^{3}=3 a x y$, then find $\frac{d y}{d x}$.
(b) If

$$
y=x^{x^{x \cdots \text { to } \infty}}
$$

find $\frac{d y}{d x}$.
17. (a) Find the length of the tangent, normal, subtangent and subnormal to the curve $y^{2}=4 x$ at $(1,2)$.
(b) A particle is moving along a straight line, according to the law $s=2 t^{3}-3 t^{2}+15 t+8$. Find its velocity and acceleration at the end of 2 sec.
18. (a) The sum of two numbers is 26 . Find them, if their product is to be maximum.
(b) If the radius of a spherical balloon is increasing by $0 \cdot 1$ percent, find the approximate percentage increase in the volume.

