

C09-CHPC-102/C09-EC-102

3028

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2013

DECE-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

PART-A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. If $x+\frac{1}{x}=1$, find the value of $x^{3}+\frac{1}{x^{3}}$.
2. Rationalise the denominator of $\frac{\sqrt{19}+\sqrt{5}}{\sqrt{19}-\sqrt{5}}$.
3. Resolve $\frac{1}{(x+9)(x+7)}$ into partial fractions.
4. If $A+B+C=90^{\circ}$, prove that $\cot A+\cot B+\cot C=\cot A \cot B \cot C$.
5. Show that $\frac{\sin 2 \theta}{1+\cos 2 \theta}=\tan \theta$.

C09-CHPC-102/C09-EC-102

6. Find the modulus of $\frac{3-4 i}{4-3 i}$.
7. Find the equation of the straight line passing through the point $(5,-21)$ and perpendicular to the line $3 x+5 y=0$.
8. Find the equation of the point circle with centre $(11,3)$.
9. Evaluate $\lim _{x \rightarrow 0} \frac{\tan 121 x}{\tan 11 x}$.
10. Differentiate $\sin x \log x$.

> PART-B

Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Using Laplace's expansion, evaluate

$$
\left|\begin{array}{lll}
q & r & p \\
r & p & q \\
p & q & r
\end{array}\right|
$$

(b) Find the adjoint of

$$
\left[\begin{array}{lll}
2 & 3 & 2 \\
1 & 7 & 3 \\
0 & 1 & 7
\end{array}\right]
$$

C09-CHPC-102/C09-EC-102

12. (a) If $A+B+C=180^{\circ}$, show that

$$
\sin 2 A-\sin 2 B-\sin 2 C=-4 \sin A \cos B \cos C
$$

(b) Prove that $\tan ^{-1} \frac{4}{9}+\tan ^{-1} \frac{3}{5}=\tan ^{-1} \frac{47}{33}$.
13. (a) Solve $2 \sin ^{2} \theta=1-\cos \theta$.
(b) In any $\triangle A B C$, show that $\Sigma \cot A=\frac{R\left(a^{2}+b^{2}+c^{2}\right)}{a b c}$.
14. (a) Find the vertex, focus and directrix of the parabola $(y-4)^{2}=12(x+1)$.
(b) Find the equation of the ellipse which passes through the points $(-2,1)$ and $(-1,3)$ with axes as coordinate axes.
15. (a) Find the equation of the rectangular hyperbola whose focus is $(1,1)$ and directrix is $x+3 y+1=0$.
(b) Find the perimeter and centroid of the triangle formed by the points $(7,-4,7)$; $(1,-6,10)$; $(5,-1,1)$.
16. (a) Find $\frac{d y}{d x}$, if $x=5(\theta-\sin \theta), y=5(1-\cos \theta)$.
(b) If $y=\sqrt{\cot x+\sqrt{\cot x+\sqrt{\cot x+\cdots}} \text { to } \infty}$, show that $\frac{d y}{d x}=\frac{\operatorname{cosec}^{2} x}{1-2 y}$.

C09-CHPC-102/C09-EC-102

17. (a) For any curve, show that $\sqrt{\frac{\text { Subtangent }}{\text { Subnormal }}}=\frac{\text { Length of tangent }}{\text { Length of normal }}$.
(b) Each side of a square increases at the rate of $1.5 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area of the square increases when the side is 12 cm . Also find the rate at which perimeter increases.
18. (a) Find the dimensions of a rectangle of maximum area having a perimeter of 12 ft .
(b) The radius of a spherical balloon is increased by 2%. Find the approximate percentage increase in its surface area.
