

7224

BOARD DIPLOMA EXAMINATION, (C-20)

FEBRUARY/MARCH — 2022

DAE - THIRD SEMESTER EXAMINATION

ENGINEERING MATHEMATICS - II

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

(2) Each question carries three marks.

1. Evaluate
$$\int \left(\sqrt{x} + \frac{1}{2\sqrt{x}}\right) dx$$

2. Evaluate
$$\int e^{5x+3} dx$$

3. Evaluate
$$\int \frac{\sin(\log x)}{x} dx$$

4. Evaluate
$$\int e^x(x^2+2x)dx$$

5. Evaluate
$$\int_0^3 \frac{2}{2x+3} dx$$

- **6.** Evaluate $\int_{-1}^{1} x \, dx$
- 7. Find the mean value of the function $f(x) = \sin x$ over the range $[0, \pi]$.
- **8.** Find the differential equation of all straight lines passing through the origin.

9. Solve
$$(1+y^2)dx + (1+x^2)dy = 0$$

$$10. Solve $\frac{dy}{dx} + \frac{y}{x} = 1$$$

PART—B

 $8 \times 5 = 40$

Instructions: (1) Answer **all** questions.

- (2) Each question carries eight marks.
- 11. (a) Evaluate $\int \tan^2 x \sec^4 x \, dx$

(OR)

(b) Evaluate
$$\int \frac{x^2}{(x+1)(x+2)^2} dx$$

12. (a) Evaluate
$$\int \frac{1}{3+2\cos x} dx$$

(OR)

(b) Evaluate
$$\int \log x \, dx$$

13. (a) Evaluate $\int_0^{\frac{\pi}{4}} \cos 3x \cos 5x \, dx$

(OR)

(b) Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx$$

14. (a) Compute the area of the region bounded by the parabola $y = x^2$ and the straight line y = 2x.

(OR)

- (b) Find the RMS value of $f(x) = \sqrt{\log x}$ over the range x = 1 to x = e.
- **15.** (a) Find the volume of the solid of revolution bounded by the circle $x^2 + y^2 = 36$ and the lines x = 0, x = 4 about the x-axis.

(OR)

(b) Obtain the value of $\int_0^1 \frac{1}{1+x^2} dx$ using Simpson's $\frac{1}{3}$ rd rule by dividing the interval [0,1] into 4 equal parts and hence find the approximate value of π .

PART—C $10 \times 1 = 10$

Instructions: (1) Answer the following question.

- (2) The question carries ten marks.
- **16.** Solve $(x^2 + y^2)dx 2xy dy = 0$

