

7017
 BOARD DIPLOMA EXAMINATION, (C-20) JUNE/JULY—2022 DCE - FIRST YEAR EXAMINATION ENGINEERING MATHEMATICS - I

Instructions: (1) Answer all questions.
(2) Each question carries three marks.

1. If $A=\{-2,-1,0,1,2\}$ and $f: A \rightarrow B$ is a function such that $f(x)=x^{2}+x+1$, then find the range of f.
2. Resolve $\frac{x}{(x-1)(x-3)}$ into partial fractions.
3. If $A=\left[\begin{array}{ccc}2 & 3 & 1 \\ 6 & -1 & 5\end{array}\right], B=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -1 & 3\end{array}\right]$ and $A+B-X=0$, then find X.
4. If $A+B=\frac{3 \pi}{4}$, then prove that $(1+\cot A)(1+\cot B)=2$.
5. Prove that $\frac{1+\cos 2 \theta}{\sin 2 \theta}=\cot \theta$
6. Find the modulus of the complex number $(3+4 i)(2-3 i)$.
7. Find the distance between the parallel lines $4 x-3 y+9=0$ and $4 x-3 y+5=0$
8. Evaluate $\lim _{x \rightarrow 0} \frac{\tan 9 x}{\tan 4 x}$
9. Find the derivative of $\sqrt{x}-\sec x+\log x$ w.r.t. x.
10. Find the derivative of $\sqrt{\tan 2 x}$ w.r.t. x.

Instructions : (1) Answer all questions.
(2) Each question carries eight marks.
11. (a) Show that $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$
(OR)
(b) Solve the following system of equations using matrix inversion method:

$$
x+y+z=6, x-y+z=2,2 x+y-z=1
$$

12. (a) If $\cos x+\cos y=\frac{3}{5}$ and $\cos x-\cos y=\frac{2}{7}$, then show that

$$
21 \tan \left(\frac{x-y}{2}\right)+10 \cot \left(\frac{x+y}{2}\right)=0
$$

(OR)
(b) Prove that $\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)=\tan ^{-1}\left(\frac{2}{9}\right)$
13. (a) Solve $2 \sin ^{2} \theta-\sin \theta-1=0$

(OR)

(b) In any $\triangle A B C$, show that $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\frac{s^{2}}{\Delta}$
14. (a) Find the equation of the circle with $(-5,1)$ and $(3,-7)$ as the two end points of its diameter and also find its centre and radius.

(OR)

(b) Find the equation of the parabola whose focus is $(1,-1)$ and directrix is $x-2 y+1=0$
15. (a) If $x=a(\theta-\sin \theta)$ and $y=a(1-\cos \theta)$, then find $\frac{d y}{d x}$ at $\frac{\pi}{2}$.
(OR)
(b) If $y=\tan ^{-1} x$, then find $\left(1+x^{2}\right) y_{2}+2 x y_{1}=0$

Instructions: (1) Answer the following question.
(2) Its carries ten marks.
16. Find the length of tangent, normal, sub-tangent and sub-normal at the point $(2,4)$ on the curve $y=x^{3}-2 x^{2}+4$ and also find the equations of tangent and normal.

