C16-C-103/C16-CM-103 ## 6018 ## BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV-2018 ## DCE—FIRST YEAR EXAMINATION **ENGINEERING PHYSICS** Time: 3 hours] $3 \times 10 = 30$ PART—A Instructions: (1) Answer all questions. - (2) Each question carries three marks. - (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences. - **1.** Write the dimensional formulae for the following physical quantities: - (a) Force - (b) Work done - (c) Power - **2.** Find the cross-product between the vectors \vec{A} $2\vec{i}$ $3\vec{j}$ \vec{k} and \vec{k} \vec{i} \vec{j} $2\vec{k}$. - **3.** Define acceleration due to gravity. Write its SI unit and dimensional formula. - 4. Define SHM and give two examples. - **5.** State the first and second laws of thermodynamics. - **6.** Distinguish between musical sound and noise. | 8. | Dei | fine stress. Write its SI unit and dimensional formula. | | |------|------|--|-----------| | 9. | | te Coulomb's inverse square law of magnetism and write tration for it. | the | | 10. | Wr | ite any three applications of optical fibres. | | | | | PART—B 10×5= | :50 | | Inst | ruci | tions: (1) Answer any five questions. | | | | | (2) Each question carries ten marks: | | | | | PART—B 10×5= tions: (1) Answer any five questions. (2) Each question carries ten marks (3) Answers should be comprehensive and the criterior valuation is the content but not the length the answer. | ion
of | | 11. | (a) | Define scalar product of two vectors. | 2 | | | (b) | Write four characteristics of scalar product. | 4 | | | (c) | The resultant of two forces 12 N and 16 N is 20 N. Find the angle between them. | 4 | | 12. | (a) | Derive the expression for maximum height reached and horizontal cange of a obliquely projected body. | 7 | | | (b) | A body is thrown up vertically with a velocity of 19.6 m/s. Calculate the time of ascent. | 3 | | 13. | (a) | State the laws of limiting friction. | 3 | | P | (b) | Derive an expression for the acceleration of a body moving down the rough inclined plane. | 5 | | | (c) | List any four methods of reducing friction. | 2 | | 14. | (a) | State and verify law of conservation of energy in the case of freely falling body. | +6 | | | (b) | A bullet of mass 20 g is fired with a velocity of 250 m/s. Find its kinetic energy. | 3 | 2 [Contd... 7. Define capillarity and give two examples. * /6018 | (a) | - | +3 | |-----|--|---| | (b) | Calculate—(i) initial displacement, (ii) amplitude, and (iii) phase constant for a particle in SHM whose displacement is given by $y = 5\sin(10t) + 4$. | 4 | | (a) | Derive the gas equation PV RT. | 2 | | (b) | One litre of air is heated from 27 °C to 170 °C at constant pressure. Find the increase in volume. | 4 | | | Doppler effect. | +3 | | (b) | Write the causes and three effects of noise pollution. | 6 | | | | 4 | | | Derive the condition for balancing the Wheatstone bridge with necessary diagram. | 6 | | | (b) (a) (b) (a) (b) (a) (b) | (b) Calculate—(i) initial displacement, (ii) amplitude, and (iii) phase constant for a particle in SHM whose displacement is given by y 5 sin (10t / 4). (a) Derive the gas equation PV RT. (b) One litre of air is heated from 27 °C to 170 °C at constant pressure. Find the increase in volume. (a) What is Doppler effect? Write any three applications of Doppler effect. (b) Write the causes and three effects of noise pollution. (a) State and explain Kirchhoff's voltage law. (b) Derive the condition for balancing the Wheatstone bridge |