

6017

BOARD DIPLOMA EXAMINATION, (C-16)

DCE—FIRST YEAR EXAMINATION

Time: 3 hours]

Instructions: (1) Answer all questions:

- (2) Each question carries **three** marks.

 1. Resolve $\frac{x}{x^2 3x + 2}$ into partial fraction.

 2. If $A = \begin{bmatrix} 2 & -4 \\ -5 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -8 \\ 7 & 2 \end{bmatrix}$, find 2A-2B.
- 3. Evaluate $\begin{vmatrix} p & q & r \\ q & r & p \\ r & p & q \end{vmatrix}$.
- **4.** Prove that, $\frac{\cos 5^{\circ} \sin 5^{\circ}}{\cos 5^{\circ} + \sin 5^{\circ}} = \cot 50^{\circ}.$
- **5.** Prove that, $\sin(45^{\circ} + \theta)\sin(45^{\circ} \theta) = \frac{1}{2}\cos 2\theta$.
- **6.** Find the modulus and multiplicative inverse of $-\sqrt{3} + i$.

- 7. Find the intercepts made by the line 3x 7y = 1, on the coordinate axes.
- **8.** Find the distance between the parallel lines 5x y + 5 = 0 and 5x - y + 11 = 0.
- **9**. Evaluate $\lim_{\theta \to 0} \frac{\sin 3\theta + \sin 5\theta}{8\theta}$.
- **10**. Differentiate $e^{-3x}\cos x$, w.r.t. x.

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- 11. (a) Solve the equations x+y+z = 6, x-y-z=2 and 2x-y+z=1 by Cramer's rule.

 (b) Find the inverse of the matrix $\begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -4 \\ 1 & 2 & 1 \end{bmatrix}$.
- [1 2 1]

 (a) Prove that, $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = 0$.

 (b) If $\cot^{-1} \frac{1}{x} + \cot^{-1} \frac{1}{y} + \cot^{-1} \frac{1}{z} = \frac{\pi}{2}$, then show that xy + yz + zx = 1.
- **13.** Solve the equation $2\sin^2\theta \sin\theta 1 = 0$.
 - (b) Solve the triangle ABC, if $\angle B = 45^{\circ}$, $\alpha = \sqrt{3} + 1$ and $\angle C = 60^{\circ}$.
- **14**. (a) Find the equation of the circle with (1,-1) and (2,3) as the extremities of the diameter.
 - (b) Find the centre, vertices, eccentricity, foci and length of latus rectum of the hyperbola $9y^2 - 4x^2 = 36$.

- **15**. (a) If $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$, then find $\frac{dy}{dx}$.
 - (b) Find $\frac{dy}{dx}$, if $y = (\sin x)^x$.
- **16.** (a) If $x = b\cos\theta$, $y = a\sin\theta$, find $\frac{d^2y}{dx^2}$.
 - (b) If $(x,y) = x^2 + y^2 + 6xy$, then find $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial y^2}$, $\frac{\partial^2 u}{\partial x \partial y}$ and $\frac{\partial^2 u}{\partial y \partial x}$. (a) Find the equations of tangent and normal to the curve $y = x^2 2x + 1$, at the point (-1,4).
- - (b) A circular path of oil spreads on water so that its area is increasing at the rate of 5 sqcm/sec. How fast is the radius increasing when its radius is 3 cm?
- (a) The sum of two numbers is 36. Find them so that their product is maximum.
 - (b) The radius of a spherical balloon is increased by 2%. Find the approximate percentage increase in its volume. Also find the per per A.A.H.M. & V.V.R.S.R. POL approximate percentage increase in its surface area.