

4424

BOARD DIPLOMA EXAMINATION, (C-14) OCT / NOV-2017

DCE-FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-III

Time: 3 Hours]

[Total Marks: 80

PART-A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

(2) Each question carries three marks.

- 1. Solve $(D^2 5D + 6) y = 0$
- 2. Solve $(D^3 + 3D^2 + 3D + 1) y = 0$
- 3. Find the particular integral of $(D^2 + 4)$ y = Cos2x
- **4.** Find the Laplace transformation of $3e^{2t} + 5t^2 + 3$ Sin4t + 5 Cos 2t
- **5.** Find L (*t Sin 3t*)
- **6.** Evaluate $\int_{0}^{\infty} te^{-3t} dt$
- 7. Find $L^{-1} \left\{ \frac{1}{s(s-2)} \right\}$
- 8. Find the Fourier Series expansion of f(x) = x, in $(-\pi, \pi)$
- 9. Find the half range Sine series of $f(x) = x + 1in(0, \pi)$
- **10.** Out of 10 girls in a class 4 have blue eyes, if 2 of the girls are chosen then find the probability that both have blue eyes.

Instructions: (1) Answer any five questions

- (2) Each question carries ten marks.
- 11. Solve $(D^2 + 2D + 1) y = Coshx + Sinx + 4 + Cos2x$.
- **12.** Solve $(D^2 + 8D + 16) y = e^{-4x} + 5 + x^2$.
- 13. a. Find $L\left\{\frac{1+Cos2t}{t}\right\}$
 - b. Find $L\left\{\int_{0}^{t} e^{-t} Cos2t dt\right\}$
- **14.** a. Find $L^{-1}\left\{\frac{1}{(S+1)(S+2)}\right\}$ using convolution theorm.
- 15. Expand f(x) = x Sinx as Fourier series in $0 < x < 2 \pi$.
- 16. Find the half- range Cosine series for the function $f(x) = x^2$ in the interval $(0, \pi)$ and hence find $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots$
- 17. a. IF 4 English, 3 Drawing and 6 Mathematics books are arranged in a self in one row, then find the probability that the books of same kind are side by side.
 - b. The probabilities of solving specific problem independently by A and B are $\frac{1}{3}$ and $\frac{1}{5}$ respectively. If both try to solve the problem independently find the probability that (i) problem is solved (ii) exactly one of them solve the problem.
- **18.** a. Evaluate P(AUB) if $2P(A) = P(B) = \frac{5}{13}$ and $P(A/B) = \frac{2}{5}$
 - b. If $P(A) = \frac{3}{8}$, $P(B) = \frac{1}{2}$ and $P(AAB) = \frac{1}{4}$, find P(AUB)