

C14-C/CM-102

4015

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL—2017 DCE—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 hours] [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Resolve $\frac{1}{(x-5)(x-7)}$ into partial fractions.

2. If
$$\begin{pmatrix} x & 3 & x & 4y & 5 & 2 \\ z & 2 & x & z & 4 & 4 \end{pmatrix}$$
, find x, y, z .

3. Evaluate
$$\begin{pmatrix} a & h & g \\ h & b & f \\ g & f & c \end{pmatrix}$$

- **4.** Prove that $\sin^2 45 \quad \sin^2 15 \quad \frac{\sqrt{3}}{4}$.
- **5.** Show that $\frac{\tan 2}{1 \sec 2}$ tan.

- **6.** Express $\frac{2}{4} \frac{5i}{3i}$ in the form of a ib.
- **7.** Find the equation of the straight line passing through (3, 4) and perpendicular to the line $x \ y \ 1 \ 0$.
- 8. Find the equation of the point circle whose centre is (3, 4).
- 9. Evaluate:

$$\lim_{x \to 0} \frac{\sin 7x}{\sin 11x}$$

10. Find the derivative $e^{3x} \sin 2x$ of with respect to x.

 $10 \times 5 = 50$

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- - (b) Solve the equations by Cramer's rule

$$x\quad 2y\quad z\quad 1,\ 2x\quad y\quad 2z\quad 1,\ x\quad y\quad z\quad 2$$

12. (a) If A B C 180, then prove that

$$\cos 2A \cos 2B \cos 2C$$
 1 $4\cos A\cos B\cos C$

(b) Prove that $\tan^{-1}\frac{1}{4}$ $\tan^{-1}\frac{3}{5}$ $\frac{3}{4}$.

- **13.** (a) Sole the equation $2\sin^2 \sin 1 = 0$.
 - (b) In any triangle ABC, prove that $\sin A \sin B \sin C = \frac{S}{R}$
- **14.** (a) Find the vertex, focus, directrix, axis and length of latus rectum of the parabola $y^2 = 16x$.
 - (b) Find the equation of the ellipse, eccentricity $\frac{1}{2}$ whose focus is the point (3, 1) and directrix is the lien x y = 6 0.
- **15.** (a) Find $\frac{dy}{dx}$ if $y (\sin x)^{\tan x}$.
 - (b) If $y = \sqrt{\sin x} = \sqrt{\sin x} = \frac{1}{\sqrt{\sin x}}$ terms, show that $\frac{dy}{dx} = \frac{\cos x}{2y + 1}$
- **16.** (a) If $y \log(x \sqrt{1 + x^2})$, show that $(1 + x^2)y_2 + xy_1 = 0$.
 - (b) If $u \sin^{-1} \frac{x^2 + y^2}{x + y}$, show that $x \frac{u}{x} + y \frac{u}{y} + \tan u$.
- 17. (a) Find the lengths of the tangent, normal, sub-tangent and sub-normal to the curve $y x^3 2x^2 4$ at (2, 4).
 - (b) The radius of a circle is increasing at the rate of 2 cm/sec. Find the rate of change of area when the radius is 24 cm.
- **18.** (a) Find the maximum and minimum values of

$$2x^3 9x^2 12x 15$$

(b) Find the approximate value of $\sqrt[3]{123}$.

* * *