

C-14-C/CM-102

4015

BOARD DIPLOMA EXAMINATION, (C-14) APRIL/MAY-2015

DCE—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answer should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Resolve $\frac{x}{(x-2)(x-3)}$ into partial fractions.
- **2.** If $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 2 & 1 \\ 4 & 3 & 2 \end{pmatrix}$, find 2A = 3B.
- **3.** Find the value of $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$.
- **4.** Show that $\tan 8A + \tan 5A + \tan 3A + \tan 8A \tan 5A \tan 3A$.
- **5.** Prove that $\frac{\sin 2}{1 \cos 2}$ cot.

- **6.** Find the real and imaginary parts of $\frac{4}{1} \frac{2i}{2i}$.
- **7.** Find the perpendicular distance from the point (3, 2) to the line 4x 5y 6 0.
- **8.** Find the equation of the circle with centre (2, -3) and radius 4.
- **9.** Evaluate : $\lim_{0} \frac{1 \cos \frac{1}{\sin \frac{1}{\cos \frac{1}{\cos$
- **10.** Differentiate x^2e^x with respect to x.

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

11. (a) If A=2=1=3, compute $A^2=5A=6I$, where I is the unit 1=1=0

matrix of order 3.

(b) Solve the following system of equations by using matrix inversion method:

$$x \ 2y \ 3z \ 6, \ 2x \ 4y \ z \ 7, \ 3x \ 2y \ 3z \ 8$$

- **12.** (a) If $A \ B \ C \ 180^{\circ}$, prove that $\cos 2A \ \cos 2B \ \cos 2C \ 1 \ 4\cos A\cos B\cos C$
 - (b) If $\tan^{-1} x \tan^{-1} y \tan^{-1} z$, show that xyz + x + y + z.

- **13.** (a) Solve $\sin 5 \sin \sin 3$.
 - (b) In any triangle ABC, prove that if $a\cos A$ $b\cos B$, then the triangle is either isosceles or right angled.
- **14.** (a) Find the equation of the parabola whose axis is parallel to x-axis and which passes through the points (2, 0), (0, 4) and (-1, 2).
 - (b) Find the equation of the ellipse whose focus is (1, -1), directrix is the line x y 3 0 and eccentricity is $\frac{1}{2}$.
- **15.** (a) If $y = (\sin x)(\log x)$, find $\frac{dy}{dx}$.
 - (b) Find $\frac{dy}{dx}$, if $y = x^{x^{x...} \text{ terms}}$.
- **16.** (a) Differentiate $\sin x$ with respect to e^x .
 - (b) If $y = \log(x \sqrt{1 + x^2})$, then prove that $(1 + x^2)y_2 = xy_1 = 0$.
- **17.** (a) Find the equations of tangent and normal to the curve $y x^2 4x 10$ at (2, 2).
 - (b) A circular plate of metal expands by heat so that its radius increases at the rate of 0.01 cm/sec. What rate is the surface area increasing when the radius is 2 cm?
- **18.** (a) A wire of length 40 cm is bent so as to form a rectangle. Find the maximum area that can be enclosed by the wire.
 - (b) If there is an error of 1% in measuring the side of a square plate, find the percentage error in its area.

* * *

3