

C09-CM-304/C09-IT-304

3230

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL—2017 DCME—THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS AND COMPUTER ARCHITECTURE

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Draw the half-adder and explain.

 $1\frac{1}{2}+1\frac{1}{2}=3$

2. Draw the symbols and truth tables for the following gates:

 $1\frac{1}{2}+1\frac{1}{2}=3$

- (a) EX-OR
- (b) EX-NOR
- **3.** What is meant by edge triggering and level triggering in flip-flops? $1\frac{1}{2}+1\frac{1}{2}=3$
- **4.** List different types of registers basing on the way data enters and exits. 1×3=3
- **5.** Define the following :

 $1\frac{1}{2}+1\frac{1}{2}=3$

- (a) Multiplexer
- (b) Decoder
- **6.** Define fetch cycle.

3

7. What is an addressing mode? List any two addressing modes.

1+2=3

/**3230** 1 [Contd...

8.	Give the examples for two-address and three-address instructions. $1\frac{1}{2}+1\frac{1}{2}=3$
9.	Distinguish between main memory and auxiliary memory. $1\times3=3$
10.	Define a bus system and state the common type of bus systems. 1+2=3
	PART—B 10×5=50
Inst	ructions: (1) Answer any five questions.
	(2) Each question carries ten marks.
	(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11.	Draw and explain a 4-bit parallel binary adder. 4+6=10
12.	Draw and explain the working of (a) NAND latch and (b) NOR latch. 5+5=10
13.	Explain a 4-bit synchronous binary counter with diagram. 4+6=10
14.	Draw the block diagram of a simple accumulator based CPU and explain the function of each unit. 4+6=10
15.	Draw and explain the flowchart for addition of floating-point numbers. 4+6=10
16.	Explain the destination initiated data transfer using handshaking procedure. 4+6=10
17.	(a) Draw a 3-bit synchronous UP/DOWN counter. 5
	(b) Explain the 1×4 demultiplexer with diagram. 5
18.	(a) Explain the fixed-point representation of numbers with example.
	(b) What is meant by virtual memory? State the reasons for using virtual memory. 2+3=5

* **/3230** 2 AA7(A)—PDF