

CO9-CM-302

3228

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV-2013

DCM—THIRD SEMESTER EXAMINATION

ENGINEERING MATHEMATICS—II

Time: 3 hours [Total Marks: 80

PART-A

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Evaluate:

$$x^4 e^x \frac{1}{x} dx$$

2. Evaluate:

$$e^{3}$$
 $5x$ dx

3. Evaluate:

$$\frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}\,dx$$

4. Evaluate:

 $x \sin x dx$

5. Evaluate:

$$\frac{dx}{4 \quad x^2}$$

- **6.** Write the formula to find the area bounded by y = f(x), x-axis between x = a and x = b.
- 7. Evaluate:

$$\int_{0}^{1} (x^2 \quad 1) dx$$

- **8.** Form the differential equation of family of curves x^2 y^2 a^2 .
- **9.** Solve :

$$x^3 dy \quad y^3 dx \quad 0$$

10. Find the particular integral of $(D^2 \ 16)y \ \sin 3x$.

PART—B

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Evaluate:

$$\frac{(x-7)}{(x-3)(x-2)}dx$$

(b) Evaluate:

$$x^2e^{3x} dx$$

12. (a) Evaluate:

 $\cos 5x \sin 3x \, dx$

(b) Evaluate:

$$\tan^5 x \sec^2 x \, dx$$

13. (a) Evaluate :

$$0^{2} \frac{\sin^{10} x}{\sin^{10} x \cos^{10} x} dx$$

- (b) Using the method of integration, find the area bounded by x^2 y^2 a^2 .
- **14.** (a) Find the volume of the solid formed by revolving the area enclosed by the curve

$$\frac{x^2}{a^2}$$
 $\frac{y^2}{b^2}$ 1

about x-axis.

(b) Find the RMS value of $\sqrt{\log x}$ between x = 1 and x = e

15. (a) Solve:

$$\frac{dy}{dx}$$
 $\frac{2y}{x}$ $\frac{1}{x^3}$

(b) Solve:

$$(D^2 \ D \ 12)y \ e^{2x} \ e^{3x}$$

16. (a) Solve:

$$(D^2 \ 4D \ 13)y \ 3\sin 3x$$

(b) Solve:

$$(D^2 \quad D \quad 6)y \quad x$$

17. Solve :

$$\frac{dy}{dx}$$
 xy xy

18. (a) Obtain the value of

$${0 \atop 0} \frac{dx}{1 \quad x^2}$$

using Simpson's rule by dividing the interval (0, 1) into four equal parts.

(b) Solve:

$$(x^3 \quad y)dx \quad (y^4 \quad x)dy \quad 0$$

* * *