

C09-A-103/C09-AA-103/C09-AEI-103/C09-BM-103/ C09-C-103/C09-CM-103/C09-CH-103/ C09-CHPP-103/C09-CHPC-103/C09-CHOT-103/ C09-CHST-103/C09-EC-103/C09-EE-103/ C09-IT-103/C09-M-103/C09-MET-103/C09-MNG-103/

C09-PET-103/C09-TT-103/C09-RAC-103

3003

BOARD DIPLOMA EXAMINATION, (C-09)

OCT/NOV-2017

FIRST YEAR (COMMON) EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Write the dimensional formulae for the following :
 - (a) Momentum
 - (b) Density
 - (c) Work
- 2. Define equal vector, negative vector and unit vector.
- **3.** A body is allowed to fall freely from a height 1960 m. Find the time taken to reach the ground.

* /3003

[Contd...

- 4. State the laws of static friction.
- **5.** The time period of a simple pendulum is 2 seconds. If its length is increased 4 times, find its time period.
- **6.** Write the statement of Boyle's law. If P_1V_1 and P_2V_2 are pressures and volumes, write the relation between them using Boyle's law.
- **7.** Write any two methods of controlling noise pollution in urban areas.
- 8. Define surface tension and explain any one example.
- **9.** Two north poles of pole strengths 1 A-m each are separated by a distance of 1 m in air. Calculate the force of repulsion between them.
- **10.** Write any three applications of optical fibers.

10×5=50

3

4

7

3

Instructions : (1) Answer any **five** questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Define scalar product of two vectors.
 - (b) Explain potential energy on the basis of scalar product. 3
 - (c) Find the work done in moving an object through a displacement of 2i 3j 5k when the applied force is
 - $5i \ 4j \ 2k.$
- 12. (a) Derive an expression for the magnitude and direction of resultant velocity of a body after any instant *t* in case of an oblique projection.
 - (b) The range of a projectile is twice its maximum height. Its velocity of projection is 10 m/s. What is the range of the projectile? (Take $g = 10 \text{ m/s}^2$)

* /3003

[Contd...

*			
13	• (a)	Define potential energy. Give its units and dimensional formula.	3
	(b)	Derive an expression for potential energy.	4
	(c)	A body of mass 5 kg is raised to a height of 10 m is 5 minutes. Find the potential energy and power required.	3
14	• (a)	Define time period of a particle in SHM.	2
	(b)	Derive the expression for time period of a particle in SHM.	5
	(c)	A particle moving in SHM has a velocity of 2 m/s when passing through center of its path and its time period is 3.142 s. Find its amplitude.	3
15	• (a)	Distinguish between isothermal and adiabatic processes.	6
	(b)	State the laws of thermodynamics.	4
16	• (a)	Explain Doppler effect in sound. Write any three applications of Doppler effect.	4
	(b)	A train at the outer signal of railway station blows a whistle of frequency 400 Hz in air. What is the frequency of the whistle for a platform observer when the train (<i>i</i>) approaches the platform with a speed of 10 m/s and (<i>ii</i>) recedes from the platform with a speed of 10 m/s. (Velocity of sound in air = 340 m/s)	6
17	. (a)	State Hooke's law.	2
	(b)	Derive an expression for Young's modulus.	4
	(c)	Calculate the force required to increase the length of a wire of cross-sectional area 10^{6} m^{2} by 50%, if the Young's modulus of the material of wire is 90 10^{9} Pa.	4
18	• (a)	Derive an expression for the specific resistance of the material of a conductor using meter bridge.	6
	(b)	State and explain Coulomb's inverse square law of magnetism.	4
		* * *	

* /3003

*