

со9-см-102

3022

BOARD DIPLOMA EXAMINATION, (C-09)

OCT/NOV—2013

DCME—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time : 3 hours]

[Total Marks : 80

PART-A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Simplify $\begin{bmatrix} 2x & \{3y & (4z & \overline{5x} & 3y\} \end{bmatrix}$.
- **2.** If 16*a* 25*b*, find the ratio $a^2: b^2$.
- 3. Resolve

into partial fraction

- **4.** Prove that $\cot A \quad \cot 2A \quad \csc 2A$.
- **5.** If $\tan 2$, find $\sin 2$.

* /3022

- **6.** Find the amplitude of $(1 \ i) (1 \ 3i)$.
- **7.** Find the locus of a point which is at a distance of 5 units from (2, -3).
- **8.** Find the equation of the circle having the points (2, 3), (6, 9) as ends of a diameter.
- 9. Evaluate

*

$$\lim_{x \to 0} \frac{\sqrt{5 x} \sqrt{5 x}}{x}$$

10. Find
$$\frac{dy}{dx}$$
 if $y = \frac{2x - 3}{x - 4}$

PART—B

10×5=50

Instructions : (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Solve by Cramer's rule

 $x \ 2y \ 3z \ 6, 2x \ 4y \ z \ 7, 3x \ 2y \ 3z \ 8$

(b) Show that

$$\begin{vmatrix} 1 & a & b & c \\ 1 & b & c & a \\ 1 & c & a & b \end{vmatrix}$$

* /3022

* /3022

*

*

[Contd...

C09-CM-102

- **17.** (a) Find the lengths of the tangent, normal, subtangent, subnormal for the curve $y = \frac{x 1}{x}$ at (1, 2).
 - (b) One end of the ladder of 17ft length is leaning against a vertical wall. If the foot of the ladder be pulled away from the wall at the rate of 3ft/min., how fast is the top descending when the foot of the ladder is 8ft from the wall?
- **18.** (a) Find the maximum and minimum values of $2x^3$ $9x^2$ 12x 5.
 - (b) If there be an error of 1% in measuring the side of a square plate, find the percentage error into its area.

*